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ABSTRACT 
 
 

Talent in mathematical reasoning is highly valued in this society and yet very little is 
known about its early course.  This book is an outgrowth of a two-year study of children 
discovered during preschool or kindergarten to be advanced in their thinking about math.  
In addition to psychometric and cognitive testing conducted at the beginning, middle, and 
end of the study, half of the children were randomly assigned to biweekly intervention 
(Saturday Club) for a total of 28 weeks over the two years.  Among other findings, the 
study revealed that, as a group, the children remained advanced in math over the two-year 
period, that their spatial reasoning related more closely to their math reasoning than did 
their verbal reasoning (although they were ahead in all three domains), and that the math 
scores of the boys started and remained somewhat higher than those of the girls.  The 
Saturday Club intervention proved effective in enhancing mathematical reasoning. 
 
This book discusses ways of identifying very young math-advanced children as well as a 
variety of educational strategies to meet their needs.  Its primary emphasis is on creating 
an open-ended approach to teaching mathematics that provides an opportunity for 
children at different levels of advancement and different personal styles to engage with 
mathematical challenges in a playful way, to conceptualize math broadly, to pose 
problems, and to make sense of the mathematical system.  Also emphasized are the 
importance of representing and communicating mathematical ideas in multiple ways in 
order to deepen children's understanding.  A variety of engaging activities such as the 
Fibonacci series, the Vedic square, and chip-trading are described.  Most of these 
activities emanate from "big ideas" such as the nature of numerals and the number 
system, equivalence, visualizing and graphing numbers, measurement, estimation, and so 
on.  Job cards for various mathematical tasks are included, as well as ways to integrate 
mathematics into other aspects of the curriculum.  The approach to mathematics 
portrayed in this book is one that creative teachers can flexibly adapt to meet the needs of 
math-advanced children in a regular or specialized classroom. 
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CHAPTER 1:  Young Children Advanced in Mathematical Thinking—
How Can We Recognize Them? 

 
 
This book is an outgrowth of a two-year study of children discovered during 

preschool or kindergarten to be advanced in their thinking about math.  With the support 
of a Javits grant from the Office of Educational Research and Improvement (OERI) of the 
United States Department of Education, we studied 284 children over a period of two 
years and involved half of them in biweekly Saturday Clubs designed to enrich their 
experience with mathematics.  The study, which we named "Math Trek," will be 
described in greater detail in Chapter 2.  It furnished us with the basis for this book, 
which constitutes a description and elaboration of our experience with a wonderful group 
of lively young math-talented children in primary grades (K-1 or 1-2).  How varied and 
enchanting a group they were! 

 
This book is about teaching young children who are good at math, children 

ranging from those who are "pretty good" at math (perhaps in the top 10%) to those who 
are so remarkably advanced that they seem light-years ahead of their agemates.  The 
children differ not only in their degree of advancement, but in many other ways as well.  
Some are better at verbal reasoning and/or visual-spatial reasoning than others—in fact, 
some are more advanced in one or more of those domains than they are in math.  In some 
children, advancement in mathematical reasoning is part of a picture of high general 
intellectual capability, while in others, logical-mathematical "intelligence" (Gardner, 
1983) seems more specialized. 

 
Some of the children are deeply passionate about numbers, as is evident in their 

questions, in their tendency to ignore what the rest of the class is doing while they are 
absorbed with a problem of their own, and in their smiles of satisfaction when they make 
sense of something puzzling.  They love "hard problems" and real challenges, and they 
are confident enough to try tasks they may not be able to master the first time.  Other 
young math-advanced children, despite knowing a good deal about math, have picked up 
the negative math-attitudes of their parents, previous teachers, or older siblings.  Others, 
by virtue of having been over-drilled in number facts and procedures, have already come 
to think of mathematics in negative ways.  Such children communicate, by their behavior, 
that math is "boring."  They don't have much fun with numbers; they don't experiment; 
lacking confidence, they tend to prefer easy problems to hard ones—or math-related 
activities that don't look like math and definitely are not labeled "math." 
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Add to this picture the fact that the contexts of these children's lives differ at least 
as widely as the children do.  In some families, numbers are a valued and embedded part 
of living.  Children from these families have been introduced to numerical concepts such 
as counting and size from their earliest conversations and their parents habitually involve 
them in number-thinking.  Some families regard math as very important but introduce 
their children too early and too vigorously to written algorithms and number facts without 
the concepts or the playfulness that enable young children to "own" what they are 
learning.  In other homes, parents, who inevitably encounter numbers every day of their 
lives, simply don't share these with their children.  Recognize also that it is probably 
easier to learn about math if your family life is relatively ordered and reasonably 
predictable.  Some families live more patterned lives than others; some families talk more 
than others; some families are barely surviving. 

 
Now, add the widely varying contexts provided by schools.  School districts differ 

in size, mixes of students, curriculum choices, political climates (specifically, politics 
about gifted children), and, above all, the degrees of flexibility encouraged by district and 
school administrators. 

 
And, to this mix add teachers.  Let's face it:  some teachers love math and it is so 

much a part of their lives, their thinking, and their classrooms that children's notions of 
numbers, numerical relationships, and uses can't help but thrive.  Some teachers don't 
know much about mathematical concepts or children's developmental trajectories in this 
area and, therefore, feel inadequate to stray beyond the prescribed textbook and materials.  
Sadly, far too many teachers were taught (as children) that math constituted an 
encapsulated area of study with esoteric rules and symbols to be memorized but not 
understood.  Math was not supposed to be any fun at all.  Those teachers decided that one 
could successfully live without it. 

 
They were wrong, of course!  Math is not only fun but reasonable; sense-making 

in math is at least as much fun as one can have anywhere else; mathematical symbols are 
no harder to decipher than any other language; and almost every teacher already knows 
plenty about math to teach primary-age children, even bright ones!  Being stumped by a 
math-related question can be a nice occasion to join the children in experimenting with 
pathways to finding answers.  It isn't scary; it's a blast!  So the issue becomes how to 
transform math from a scary school subject to an engrossing, expanding aspect of 
teaching that is enjoyable and challenging for children and teacher alike.  This book, 
drawing from our experience, represents an effort to describe such a transformative 
practice. 

 
Some Common Characteristics of Math-Advanced Children 

 
Keeping in mind that diversity abounds within the group we are talking about, 

here are some characteristics that many math-advanced children exhibit.  No single child 
is likely to show them all. 
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• Advanced computational skills (not necessarily advanced problem-solving 
skills) 

• Advanced problem-solving skills (not necessarily advanced computational 
skills) 

• Rapidity of mastering typical math curriculum at an earlier age than 
classmates 

• Exceptional mathematical reasoning ability and memory 
• Interest in mathematical symbols and written representations  
• Ability to hold problems in mind that aren't yet figured out—to ponder 

them from time to time until the answer emerges 
• "Number sense"—a ballpark "feel" for whether an answer is reasonable or 

whether a procedure might be appropriate 
• Frequent step-skipping in problem solving and unexpected ways of 

solving problems; capacity for inventing strategies 
• Rapid and intuitive understanding—thinking faster than they can write 

their answers or describe their procedures 
• A tendency to choose mathematics when presented with a choice of 

activities 
• Awareness of numbers in their surroundings and a tendency to frame 

questions numerically ("How many minutes to recess?") 
• Interest in looking for patterns and relationships and explaining them 
• Willingness and capability for doing problems abstractly; often preferring 

not to use concrete aids or manipulatives that are the hallmark of current 
approaches to math education 

• Conversely, fluency in representing mathematical ideas in different 
media—e.g., manipulatives, drawings, equations, graphs, stories 

• From these translated representations, gaining new insights that other 
children don't see 

• Long periods of absorption with problems in which they are truly 
engaged; reluctance to give up on an unsolved problem 

• Treating road-blocks as challenges; detouring rather than retreating in the 
face of obstacles; "courageousness" in trying new pathways of thinking 

• Propensity for seeing connections between a new problem and problems 
previously solved or ideas from an entirely different domain 

• Pleasure in posing original, difficult problems 
• Joy in working with "big" numbers 
• Capacity for independent, self-directed activities 
• Enjoyment of challenging mathematical puzzles and games 
 

(Adapted from House, 1987, pp. 51-52, and expanded by ideas from Math Trek 
workshop participants) 

 
These, then, are the math-talented children of Math Trek and of classrooms 

everywhere.  No two are just alike, though they share the potential for advanced thinking 
about numbers, patterns, and connections.  They can be very exciting and very rewarding 
students to teach, but they constitute a special responsibility for teachers.  Unless they are 
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challenged, given room to grow and incentives to do so, their talent can be seriously 
endangered.  They can go only so far with inventing an appropriate math curriculum for 
themselves.  Boredom and repeated experiences with "problems" well below their level 
of mastery can erode their joy and passion for exploring the system, their sense of 
efficacy as mathematicians, indeed, their basic mathematical reasoning abilities 
themselves. 

 
Math Trek was undertaken to explore the development of young, math-talented 

children and to experiment with reasonable ways to extend the curriculum of the primary 
grades.  In the next chapter, we will describe our Math Trek study.  Chapter 3 describes a 
smorgasbord of alternative arrangements within and between classrooms, ways in which 
children can be exposed to challenging curricula that are optimally matched to their 
readiness and their individual sets of needs.  In the remaining chapters, we will describe 
ways in which teachers can extend their usual classroom curricula by offering all their 
students open-ended activities that each one can profitably experience and re-experience 
at his or her own level.  Finally, in the appendices, readers will find descriptions of 
specific activities as well as lists of additional books about young children and 
mathematics resources suitable for adapting in the ways we will describe. 
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CHAPTER 2:  Math Trek—Identifying and Nurturing Mathematical 
Precocity in Young Children 

 
 
The early discovery of talent is the first step toward nurturing and enhancing it.  

There are surely many children with special talents whose abilities are doomed to wither 
for lack of attention and encouragement (Feldman, 1986).  Indeed, in the case of 
mathematical talent, advanced ability can be actively discouraged if children are forced to 
repeat, over and over, low-level skills they have mastered long before.  As we have just 
seen, math-advanced children show their abilities in a variety of ways.  It is up to the 
adults who nurture them—teachers and parents—to identify and engage the children in 
expanding their interests and competencies if their advancement is not to be lost. 

 
Talent in mathematical reasoning is highly valued in this society and is basic to 

many career paths, especially those leading to science and technology.  Yet, little is 
known about the very early course of mathematical talent, and we make no systematic 
effort to identify very young children who are talented at math.  For older students who 
reason well mathematically, annual regional talent searches (Stanley, 1990) now involve 
some 160,000 or more seventh-graders who test their skills with high-level academic 
aptitude measures, namely, the Scholastic Aptitude Test (SAT) and the American College 
Test (ACT).  We use these out-of-level tests meant for considerably older students (in this 
case, juniors and seniors applying for college) because seventh-graders who are math 
talented easily top out on measures standardized for their own age group.  Similarly, 
using out-of-level tests standardized for eighth-graders, regional talent searches have 
recently been instituted for upper elementary school students.  There are math contests of 
various kinds for junior and senior high school students and occasional contests for 
upper-elementary school students.  But math-talented children in the primary grades have 
received no such attention and no concerted efforts have been directed at identifying 
them.  Math Trek was directed toward finding out more about them. 

 
Research About Very Young Math-Talented Students 

 
Most of the research on math-talented students has also focused on the teenage 

years.  The research has been possible in large part because investigators have had access 
to the participants in the talent searches mentioned above.  Only a few investigators 
(Assouline & Lupkowski, 1992; Lupkowski-Shoplik, Sayler, & Assouline, 1993; Mills, 
Ablard, & Stumpf, 1993) have looked at older elementary students who are good at math, 
and no one has specifically looked at math-advanced children as young as the early 
primary grades. 

 
Yet, learning about numbers begins well before children enter school.  It is a 

process embedded both in number-related social activities with parents and peers (Saxe, 
Guberman, & Gearhart, 1987) and in the children's self-directed play.  Many children 
play with objects that are structured to have regular relationships to one another, such as 
blocks of different sizes, train track pieces, Legos or Duplos, or simply groups of small 
objects such as cars, bugs, or crayons (Ginsburg, 1989).  They talk about quantities with 
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their parents ("more," "all gone," and "big girl" are some of the first words they learn).  
"Are we there yet?" leads to all kinds of conversations about time and distance.  Cooking, 
going to the store, reading books, setting the table, even finding the right channel on the 
TV are all number activities that come naturally at home.  Preschoolers know a great deal 
about numbers even if they do not fully grasp the concepts (Gelman & Gallistel, 1978). 

 
About the time children enter school, the "5- to 7-year shift" occurs, a benchmark 

era during which children's thinking normally becomes systematic and begins to detach 
from its dependence on a specific context (Sameroff & McDonough, 1994).  Very young 
children may have good mastery of an idea in one context (e.g., don't write on the walls 
of the living room) but not in another (nor in your bedroom either!).  As children become 
more systematic and begin to apply their knowledge across contexts, they begin to take 
off in their mathematical reasoning and to grasp the notion that numbers have reliable, 
systematic relationships to one another and mean the same thing wherever you find them. 

 
Hardly any investigators have looked at differences in children's rate of 

development in mathematical reasoning, certainly not at the ages in which we are 
interested.  Although most research on the development of early mathematical thinking 
has ignored differences among children, some research has looked at distinctive 
characteristics in strategy use (see Geary & Brown, 1991; Siegler, 1995). 

 
When children first begin to use numbers, they have to figure things out every 

time.  Over and over, they may add two and three on their fingers to get five.  Most 
children continue to engage in slow, effortful and often inaccurate computation during 
the primary grades using a variety of problem-solving strategies before they eventually 
shift to retrieving facts they know rather than figuring them out each time (Siegler, 1991).  
Even by first grade, one can see some individual differences in children's strategies 
(Siegler, 1991, 1995).  Although most children do not show habitual automaticity—that 
is, apparently effortless recall of basic number facts—until fourth grade (Kaye, de 
Winstanley, Chen, & Bonnefil, 1989), gifted children usually begin to use retrieval, or 
automatic recall, sooner and more frequently than do average children of their age (Geary 
& Brown, 1991). 

 
Even among children who are good at math, personality differences can play a 

role in the way they deal with situations.  In fact, Siegler (1988) described three types of 
first-graders:  good students, not-so-good students, and perfectionists.  The perfectionists, 
who wanted to be sure to be right, performed as well as did the good students, had higher 
standards, and did much more checking than the other two groups, even though they 
could retrieve number facts from memory as well as the good students could. 

 
Research Questions 

 
The study from which this volume grew had a number of facets.  So little was 

known about young children who are good at math that there were many questions to 
answer.  Among them: 
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l. How can we identify young children who are good at math?  Can parents 
pick them out?  Will parents and test scores agree? 

2. If young children are good at math, at what else do they excel?  At these 
early ages, what kinds of cognitive abilities go along with the ability to 
reason well in the quantitative domain? 

3. Are there gender differences in math precocity at this young age or do 
they appear later?  What does entering school do to any gender differences 
that are observed? 

4. How stable is mathematical precocity?  Will young children who are 
initially good at math retain their rapid pace of development in 
mathematical reasoning? 

5. And finally, if children are given extra experience with mathematical 
thinking in a friendly and engaging environment that invites inquiry, will 
the intervention affect their mathematical reasoning?  Their attitudes 
toward math? 

 
The Research Team 

 
And so Math Trek was born, with the help of funding from a Javits grant for 

research on the gifted and talented, Office of Educational Research and Improvement, 
United States Department of Education.  Math Trek was a complex effort by a team that 
included several senior investigators, but also a multitude of teachers and student 
assistants who contributed significantly to its outcomes. 

 
The several senior investigators, most from the University of Washington (UW), 

came to the project with different backgrounds and agendas.  Nancy Robinson, Ph.D., 
UW Professor of Psychiatry and Behavioral Sciences and Director of the Halbert 
Robinson Center for the Study of Capable Youth, brought a long interest in the early 
emergence of precocity in development and a knowledge of psychological testing.  For 
example, with several colleagues, she had previously followed, to school age, early-
talking toddlers (Crain-Thoreson & Dale, 1992; Robinson, Dale, & Landesman, 1990) 
and other preschoolers nominated by their parents as precocious in any of a variety of 
domains (Robinson & Robinson, 1992), using psychometric measures to document their 
progress.  Virginia Berninger, Ph.D., Professor of Educational Psychology and head of 
the UW School Psychology Program, brought further expertise in psychometrics, 
individual differences, and research methodology.  Robert Abbott, Ph.D., UW Professor 
of Educational Psychology, brought a strong background in conceptualizing and 
analyzing psychometric data.  Yukari Okamoto, Ph.D., Assistant Professor of Psychology 
at the University of California at Santa Barbara, brought a background of neo-Piagetian 
theory and measurement of children's conceptual structures, as did Robbie Case, Ph.D., 
of the Ontario Institute for Studies in Education.  These investigators constituted the part 
of the team who directed major efforts at measuring and analyzing the cognitive aspects 
of the children's development. 

 
Other members of the team brought expertise in teaching and focused on the 

intervention aspects of the project, the Saturday Clubs.  Swapna Mukhopadhyay, Ph.D., 
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Assistant Professor of Curriculum and Instruction, is a specialist in teaching young 
children mathematics, and provided much of the inspiration for the approach we used and 
much of what will appear in succeeding pages.  Barbara Waxman, Ph.D., was completing 
her dissertation on young children's reasoning about math.  Barbara was head teacher in 
the Saturday Clubs and, as authorship of the volume attests, became its voice as well. 

 
The Research Plan 

 
In the spring of 1993, a publicity campaign was mounted throughout the Puget 

Sound region, the metropolitan area surrounding Seattle, to find young children, then of 
preschool and kindergarten age, who were thought by their parents and/or teachers to be 
"good at math."  Letters to schools, meetings with Head Start teachers and those involved 
in Washington State's own Head Start equivalent (the Early Childhood Assistance 
Program), articles in local newspapers, and radio talk-show interviews were the means 
we used.  Rough guidelines were mentioned such as, "Asks questions about numbers or 
time."  "Makes up games using numbers, such as playing store with prices."  For 
preschoolers:  "Uses adding and subtracting up to 5 and understands that these are 
related; knows that a dime is more than a nickel; plays board games involving counting 
spaces."  For kindergartners:  "Makes small purchases; wants to learn to tell time; reads 
symbols such as plus and minus; reads speed-limit signs; may understand that 
multiplication is shorthand for adding." 

 
To investigate parents' ability to identify these children, a sub-study was 

conducted by one of our students (Pletan, Robinson, Berninger, & Abbott, 1995).  Pletan 
sent a questionnaire to the first 120 families who nominated kindergarten children.  This 
questionnaire was developed on the basis of parent comments about their children's early 
interest in mathematical ideas.  The questionnaire can be found in Appendix A. 

 
The identification process resulted in the nomination of 798 children, with 778 

families actually mailing in information and consent forms and permitting their children 
to be screened.  We tested every one of these children with two or three brief 
standardized arithmetic measures.  In the screening process, testers administered the 
Arithmetic subtest of the Kaufman Assessment Battery for Children (K-ABC) and the 
Arithmetic subtest of the Wechsler Preschool and Primary Scale of Intelligence, Revised 
(WPPSI-R).  Children who had reached their sixth birthdays and who hadn't topped out 
on the WPPSI-R, were also given the Arithmetic subtest of the Wechsler Intelligence 
Scale for Children, Third Edition (WISC-III). 

 
From the 778 children we screened, we first selected all the children who had 

attained a score at the 98th percentile or higher on any of the screening measures.  We 
also included four boys with lower scores but compelling evidence of special interest in 
numbers.  Because this group was too large for our resources, of the 348 children who 
met these inclusion criteria, we kept all the girls but randomly dropped 9 preschool and 
29 kindergarten boys.  The final sample of 310 children included 61 preschool girls, 78 
preschool boys, 77 kindergarten girls, and 94 kindergarten boys.  According to their 
intended kindergarten and first-grade placement, a total of 158 different elementary 
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schools were involved!  Half the children were then randomly assigned to either a 
comparison or an intervention group, with the provision that all the children who attended 
a single school were in the same group. 

 
One arm of the study was directed at documenting and following for two years the 

cognitive development of all 310 children (Robinson, Abbott, Berninger, & Busse, 1996; 
Robinson, Abbott, Berninger, Busse, & Mukhopadhyay, under review).  In the fall of 
1993, and again in the spring of 1995, the children were individually administered a 
battery of measures tapping not only a wide variety of mathematical reasoning functions 
but also verbal ability, visual-spatial ability, and short-term working memory span; they 
were also asked questions about academic self-concept taken from the Pictorial Scale of 
Self Perception (Harter & Pike, 1984) and, in the final round, questions about what they 
found satisfying in math, some of these our own queries and some borrowed from 
Nicholls and his colleagues (Nicholls, Cobb, Wood, Yackel, & Patashnick, 1990).  
Embedded in the battery were experimental measures of conceptual structure developed 
by neo-Piagetian investigators (Case, 1985; Crammond, 1992; Okamoto, 1992a, 1992b; 
Okamoto & Case, 1996); these measures as well as the Harter questions were also 
administered to the children half-way through the study, so that special analyses of their 
growth patterns could occur.  Some families had moved out of state and a few had 
dropped out of the study before it was over.  We actually re-tested 284 of the 310 
children seen originally. 

 
The other arm of the study is of greatest relevance to this book.  For the children 

in the intervention group, Saturday Clubs were offered every other Saturday during the 
two succeeding school years, a total of 28 sessions in all.  In groups of about 15, with the 
guidance of certified elementary teachers most of whom had been trained by Professor 
Mukhopadhyay, children met for half-day sessions, either morning or afternoon.  In these 
sessions, the children were offered opportunities to become engaged in a wide variety of 
math activities.  Most teachers were assisted by two, sometimes more, people, some of 
whom were graduate-student teachers in training and some of whom were undergraduate 
psychology students.  Various sites were provided to be as convenient as possible for this 
geographically far-flung group of families.  For the most part, the younger group 
(kindergarten and then first-grade as the study progressed) met in the morning and the 
older group (first-grade and then second-grade as time went on) met in the afternoon, but 
adjustments were made for the children's other activities (soccer games, ballet lessons, 
and chess tournaments were major events), car pools, and, in some cases, maturity levels.  
There will be much more about the Saturday Clubs in the chapters to come. 

 
Research Findings 

 
The results of our work have been described in three research articles (Pletan et 

al., 1995; Robinson et al., 1996; under review).  Our first question had to do with 
identifying the children.  We knew from previous studies that parents of very young 
children, even toddlers, could identify children who were advanced in talking, reading, 
and general intelligence, but what about math?  The results of our initial search showed 
that, indeed, parents can identify math-talented children.  On average, for the 778 
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children we screened, mean standard scores on the Arithmetic subtests of the K-ABC and 
the WPPSI-R placed them at the 86th to the 90th percentile.  Had parents not been good 
at identifying the children, the mean standard scores should have been at the 50th 
percentile.  The children we picked to follow as a group of course scored even higher.  
Their mean standard scores on the K-ABC arithmetic subtest placed them at 
approximately the 95th percentile and at about the 98th percentile on the WPPSI-R 
arithmetic subtest. 

 
How accurate were the parents as informants?  The substudy (Pletan et al., 1995) 

in which we sent a questionnaire to 120 parents of kindergarten children demonstrated 
that, indeed, parents were not only good at picking the children but accurate in describing 
them.  Five factors characterized the parents' responses to the questionnaires:  a general 
intellectual factor, a short- and long-term memory factor, a rote (rehearsed) memory 
factor, a spatial reasoning factor, and a specific relational knowledge factor.  Scores on 
the first three factors correlated significantly with screening scores on both scales, but 
scores on the last two factors did not. 

 
At what other cognitive tasks are young, math-talented children advanced?  We 

were not surprised to find that the children were advanced on all the standardized 
measures we administered, not just the math subtests.  Their scores on the measures of 
verbal ability, the Vocabulary, Comprehension, and Memory for Sentences subtests of 
the Stanford-Binet, Fourth Edition (SB-IV), hovered around the 90th percentile.  The 
same was true of their scores on the two SB-IV visual-spatial subtests, Pattern Analysis 
and Matrices. 

 
Within this pattern of advanced abilities, however, some abilities were more 

closely related to math than others.  Specifically, the children's scores on the various 
visual-spatial measures (the two above, plus a visual-spatial working-memory span 
measure) were much more closely correlated with their math reasoning scores than were 
the scores on the verbal measures.  This was a little less true for the older group than the 
younger group, but the pattern was the same:  For young children who are good at math, 
visual-spatial reasoning abilities probably play a very important role in the way they 
think about math, a more important role than does reasoning in words or purely verbal 
knowledge. 

 
Are there gender differences even at this early age?  Alas, there are.  More boys 

than girls were nominated for the study, and of the children nominated, the boys tended 
to score higher.  Indeed, within our group we had a hard time finding as many girls in the 
younger group as we wanted despite extra appeals.  We finally settled for an incomplete 
group (61 versus the 77 we had hoped for).  In contrast, we found a superfluity of boys 
for the older group.  And, within the battery of scales we administered, there were 
significant gender differences in favor of the boys on seven of nine math reasoning 
measures, including one memory measure.  Contrary to expectations, there were not 
apparent gender differences on the visual-spatial reasoning measures, but there was a 
difference on the one visual-spatial memory measure, in favor of the boys.  Neither the 
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verbal reasoning nor the verbal memory measures were characterized by consistent 
gender differences. 

 
When we looked at just the highest-scoring children, those in roughly the top 5% 

on each measure, the same gender patterns held—the boys were again overrepresented in 
this top group on the mathematical reasoning measures.  The pictures for the verbal and 
visual-spatial measures were more mixed and not so gender-lopsided. 

 
We didn't know what to make of this finding.  We certainly had no definitive 

explanation of the gender differences.  We doubted that parents were simply overlooking 
girls who were good at math, since in that case, those they identified should have been, 
on average, at least as advanced in math as the boys who were identified.  We speculated 
that, whether or not there were any built-in gender differences in mathematical reasoning, 
the children's life experiences might well have influenced their number knowledge and 
number sense.  Little boys, it's easy to observe, tend to gravitate in their play to countable 
and structured materials like blocks, cars, and railroad tracks; little girls tend to be more 
social in their play (Maccoby & Jacklin, 1974).  We suspected that parents might tend to 
engage sons more frequently than daughters in talk about numbers.  Is it possible that the 
gender differences we saw were wholly the product of children's differential experience?  
Or could some built-in differences have determined the children's play choices and 
colored the way in which the adults responded to them?  In this way, could initially very 
small built-in differences have been magnified during the preschool era? 

 
We waited anxiously to see how the children fared over the next two years, when 

they were tested again at the end of first and second grade.  Indeed, as a total group, in all 
three domains we examined (verbal, visual-spatial, and mathematical), they not only 
remained as advanced over their agemates as they had been the first year, on some 
mathematical reasoning measures, they were even more decidedly ahead.  This was true 
of the comparison group that had not attended Saturday Clubs as well as the group that 
had.  Among the standardized subtests on which we could compare them with children of 
their age in the general population, at the last testing they were even more impressive in 
their abilities to extend series of numbers arranged according to principles they had to 
discern, to visualize mathematical problems spatially, to answer questions about the 
number system, and to do written calculations.  In visual-spatial reasoning tasks such as 
copying block patterns or completing matrices, they had also made advances relative to 
their age peers.  We concluded that not only were these children ahead of their peers 
when we first saw them, but also as a group, they held their own in every respect and 
made even more impressive gains over the next couple of years. 

 
What about the gender differences?  We found that these did not disappear.  

Indeed, in overall mathematical reasoning, the boys made greater gains than the girls over 
the two years, although the girls' progress was greater on one subtest involving word 
problems.  Although we had expected that the girls, once exposed to classroom 
instruction, might compensate for possible earlier differences in their play experience, 
this was not the case.  We seemed to have discovered another instance of what many call 
the Matthew Effect ("the rich get richer") (Walberg & Tsai, 1983). 
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With regard to the impact of our Saturday Club intervention, the overall effects 
were statistically significantly positive when we looked at the strides made by the 
intervention group on the math-related measures compared with those made by the 
comparison group.  Recall that the children had been randomly assigned to the two 
groups, so there was justification in attributing the differential gains to the intervention.  
The intervention group had made the greatest gains in geometric reasoning, but some 
positive effects of the intervention were seen on almost all the math measures.  The 
difference between the groups was not significant in terms of their growth on the verbal 
measures and only marginal on the visual-spatial measures, tending to confirm the notion 
that Saturday Clubs had specifically facilitated the mathematical reasoning of the 
participants.  We were, of course, pleased with these findings.  Indeed, it was these 
findings that gave us the courage to share with teachers the philosophy underlying our 
approach and the methods we used. 
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CHAPTER 3:  Alternatives in Meeting the Needs of Math-Advanced 
Children—A Smorgasbord 

 
 
In this book, we want to help teachers rethink the ways they can meet the needs of 

children who are capable of more advanced mathematical reasoning in the context of 
their classrooms, whether in homogeneous (what a misnomer!) classrooms for gifted 
children or heterogeneous, inclusive ones.  Most of the book will introduce or re-
introduce largely constructivist teaching methods and content that derive in part from 
those who have gone before (e.g., Duckworth, 1996; Kamii, 1984, 1989); these writers 
have all emphasized, as we do, teaching for meaning and "big ideas," as well as 
empowering learners. 

 
This approach is also fully consistent with the Curriculum and Evaluation 

Standards for School Mathematics published in 1989 and subsequently elaborated by the 
National Council of Teachers of Mathematics, emphasizing active learning, problem-
solving, reasoning and number sense, pattern-finding, engagement with manipulatives, 
questioning, and communicating ideas.  Contemporary classrooms are characterized by 
real-world thinking rather than rote practice with computational operations and 
memorizing number facts (although these have their place).  New methods of instruction 
encourage children's ability to grasp meaning in the number system, to see patterns and 
relationships, to figure out more than one strategy to solve meaningful problems, and to 
communicate their findings and discoveries to others.  Children often work together in 
small groups, problem-solving with a variety of materials (manipulatives, formal and 
informal devices for measuring, calculators, computers); talking, writing, and drawing 
about their ideas; examining ways in which their ideas differ from those of their 
classmates; developing their own questions and problems; and otherwise participating in 
activities that are much more lively and engaging than math in the "olden days." 

 
Such an instructional approach enables teachers to become intimate with what 

children are thinking, to become question-askers rather than answer-tellers, and to help 
children become engaged in problems that are meaningful to them.  It is the kind of 
atmosphere in which children's thinking thrives.  Most of this book is devoted to 
promoting just that kind of interaction. 

 
First, however, in this chapter, we will outline some alternative means of adapting 

to the needs of children whose mathematical thinking is advanced, and so present a 
smorgasbord of educational options.  Nothing in this book should be taken to imply that 
there is only one right way to deal with the needs of these children (or any other children, 
for that matter).  There is only one wrong way:  To ignore the fact that children differ, to 
treat them as all alike, to be inflexible, to rob them of joy or confidence. 

 
Not only are there many ways to meet the needs of math-advanced children, but 

each child needs a mixture of possibilities and experiences—choices creating a full plate 
selected from the smorgasbord.  A rich buffet consists of many dishes from which 
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teachers and children can select several to match appetites, skills, deficiencies, 
curiosities, risk-taking proclivities, and so on.  Nobody takes just one dish! 

 
A Guiding Concept:  The Principle of the Optimal Match 

 
Every philosophy of education that takes into account individual differences 

among children works on the notion that, at any time, there is an optimal level of 
instruction that captures a child's readiness to learn:  an optimal match.  Only if children 
are engaged in learning at a level appropriate to their ability and skills, at a level they are 
almost ready for, is there likely to be a real change in their ways of thinking.  Significant 
learning involves stretching one's mind. 

 
If things go too slowly, boredom and turn-off are almost inevitable; if things go 

too rapidly or at too high a level, children (especially young children) are likely to 
become uncertain and avoidant.  For math-talented children, the dangers are usually in 
going too slowly or in too shallow a fashion, with unneeded repetition of what the 
children already know and too little incentive to become truly engaged with new 
concepts, to figure out, to experiment, to see connections, to make sense of things.  
Children who are bored do very little learning.  This is especially true of young children, 
who are almost all inveterate hedonists, ruled by what feels good and what doesn't. 

 
Underchallenged math-talented children who are by nature well behaved may not 

let their teachers know how turned-off and miserable they are.  In contrast, those who 
misbehave in response to similar feelings may be so irritating that their teachers never 
guess the underlying source of the trouble.  (One very bright child of our acquaintance 
was expelled from first grade for kicking the teacher out of sheer frustration and four 
years later entered a university from which, a model of deportment, he graduated with a 
B.S. in mathematics at age 13.) 

 
We do occasionally meet young, math-talented children who have been pushed 

too quickly through mastery of mathematical procedures, generally by their parents rather 
than their teachers.  Typically, these children don't show signs of being in love with math.  
They may be able to carry out advanced operations, but without much conceptual 
understanding and with very little joy.  One father told us that his son, then in 
kindergarten, was doing his "l7 times" tables, whereas in fact the child was completely 
nonplussed by simple word problems using numeric relationships below 10, and couldn't 
produce number facts he had not memorized.  Even worse, he scowled and mumbled 
when faced with math tasks and clearly wished he were somewhere else. 

 
For the most part, however, parents are both good informants and sensitive to 

their children's interests and levels of understanding.  What may seem at first to be a 
"pushy parent" is much more likely to be a parent running to keep up, striving to produce 
an optimal match.  These parents can do an even better job if teachers validate their 
perceptions, respond to their children's needs, and enlist their collaboration. 
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There are many ways to produce an optimal match in the classroom for math 
talented children.  The essential aim is to pace instructional experiences so that they fit 
the child's intellectual and personal maturity, thereby producing appropriate challenge, 
supporting growth, and enhancing the student's energy and motivation.  Achieving an 
optimal match requires flexibility, ingenuity, compromise—and effort.  The Principle of 
the Optimal Match, as you've guessed by now, is appropriate for all students, not just 
those with advanced capabilities. 

 
Fundamental Versus Complementary Components 

 
One useful way to conceptualize components of an optimal match setting for 

children is to distinguish between those aspects that are part and parcel of the basic 
instructional program (fundamental components) and those that embroider upon and 
extend it (complementary components).  This book basically addresses the former, in 
essence, the regular school day.  Some of our attention will be directed toward creating a 
climate and presenting activities in which children of all levels including the math-
talented will be engaged with active learning about math and supported in spontaneously 
reaching their own optimal match levels.  Even when we discuss supplementary activities 
in which children can engage in individually or in small groups, activities that extend the 
regular curriculum, for the most part we will assume that these activities occur during the 
regular school day or those after-school parts of it that we call "homework." 

 
There are other possibilities for complementary activities that a school might 

provide, although in practice most of these tend to be limited to older children.  There 
are, for example, inter-school, regional, and even national academic competitions in 
mathematics, but few of these involve children in the primary grades.  A few younger 
children will be ready "early," however.  The contest for the youngest children of which 
we are aware is Mathematical Olympiads for Elementary Schools (Dr. George Lencher, 
125 Merle Ave., Oceanside, NY 11572).  Group activities such as Odyssey of the Mind 
can begin with kindergarten on a local level; math is embedded in many of the tools the 
student groups may use to problem-solve in this competition.  An interested and a 
talented parent might start an after-school math club that, for example, seeks out patterns 
and problems in the "real world."  There are many such worthy possibilities capable of 
enriching and extending the experience of talented students, but such complementary 
activities cannot make up for inappropriate instruction during the regular school day.  We 
owe children joy and challenge and the power of doing something new and difficult—
every day. 

 
Acceleration 

 
When children are advanced in any area, their growth has been faster than 

expected for their calendar age.  That's what the term means.  To achieve an optimal 
match, therefore, the challenges presented them must likewise be advanced. 

 
Mathematical knowledge and reasoning, particularly in the primary grades, have 

basic aspects that are linear and orderly in their sequences.  Early-taught skills and 
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strategies are needed in order to proceed to more advanced tasks.  Furthermore, even if it 
weren't absolutely necessary, we do teach topics in relatively predictable order (e.g., we 
usually teach children fractions before decimals).  Within a single class, there are 
children at many steps along these developmental sequences, with the math-advanced 
children generally (but not always) leading the way. 

 
For these reasons, it makes good sense to assess each child's developmental 

status, keep track as the year progresses, and create an optimal match by proceeding 
along the regular sequence in what is offered, pacing advancement by the child's 
readiness.  This process is called acceleration, but it does not imply that anyone is 
pushing a child (as one pushes the accelerator to make a car go faster).  Even when we 
offer children what we think of as enrichment, deepening and broadening the range of 
their mathematical concepts and activities beyond the basics, it's important that these 
activities match their developmental levels.  Advanced enrichment is probably a better 
term.  (Never give more problems at the same level just because a child works quickly!) 

 
For many math-talented children, out-of-level assessment measures are needed—

tests that are designed for children somewhat older, sometimes considerably older, than 
most children at their own grade level.  For math-advanced primary-grade children, a 
good place to start is two grades ahead.  Some assessment can be quite informal—for 
example, chapter tests from textbooks borrowed from a teacher in a higher grade.  If 
nationally standardized tests are administered regularly, these children can be given—in 
math, at least—measures designed for older children.  More efficient is the use of a 
broad-scale standardized screening measure such as the Woodcock-Johnson Tests of 
Achievement, Revised (WJ-R), which the school psychologist may be willing to 
administer.  From this, one can get a ballpark grade-level estimate of the children's math 
skills and some information about specific skills in both calculation and problem-solving, 
creating a sense of their "frontiers of development."  Some children are basically a 
chapter ahead; some are a grade ahead; a few are light-years ahead. 

 
Such assessment measures won't tell teachers everything.  They won't tell how 

deeply a child understands a concept.  For example, a child who can calculate perfectly 
well using zeros may not have a clue as to what zeros stand for or how difficult life 
would be without them.  Children who can easily pick out squares and trapezoids may not 
know their defining features.  And a child who can solve a problem using a practiced 
algorithm may not have enough understanding to get to the same answer by a different 
route.  An imaginative teacher, observing and asking questions, can develop a fine-tuned 
notion of a child's mastery of a concept, a very useful complement in the day-to-day 
classroom to the bird's-eye view afforded by standardized tests. 

 
And test results certainly won't reveal the specific problems a child is already 

working on "in her head."  Teachers have to listen carefully to children to find out.  
Sometimes a passing remark will be a clue, when least expected.  A notebook and pencil 
in a pocket to jot down such comments can provide a reminder of a topic to return to or a 
clue about a child no one had ever suspected of harboring a mathematical inner life. 
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Smorgasbord Options Within the Classroom 
 
No matter how mathematical talent is determined, teachers must still figure out 

how to meet the children's intellectual needs.  There are, in fact, a great many ways to 
accomplish acceleration within fundamental instructional plans for young children.  Here 
are some. 

 
Compacting the Curriculum 

 
Compacting achieves a productive balance for each child of time spent on the 

regular curriculum and activities that stretch and extend the curriculum beyond its usual 
boundaries.  For the child who grasps concepts quickly and acquires facts easily, it is 
appropriate to reduce the number of problems or exposure time to a minimum in favor of 
other activities that extend concepts and skills to higher levels.  A number of authors (see 
especially Reis, Burns, & Renzulli, 1992; Starko, 1986; Winebrenner, 1992) have 
presented effective ways of compacting the curriculum as well as making good use of the 
time thereby saved. 

 
Even before a teacher introduces a concept, some (or many) of the children in the 

class may already understand quite a bit about the topic.  The teacher's task is to assess 
what they do understand in order to know where to go from there.  For example, before 
starting a new chapter, children might be permitted to take the end-of-chapter test.  
Children who already know the material with something like an 85% level of mastery can 
profitably skip it or concentrate on the parts of the chapter they haven't mastered.  There's 
no real reason to limit this practice to the children who are thought of as math-advanced.  
Some of the others—indeed, the whole class—may do surprisingly well.  Unfortunately, 
many current textbooks present a good deal of content that most children in fact have 
already mastered, and such pretesting can avert what would otherwise have been 
essentially wasted effort.  On the other hand, for the child who is exceptionally advanced 
in mathematical reasoning, even going quickly through grade-level chapters may not be 
appropriate. 

 
Working Ahead in the Curriculum 

 
If pretesting demonstrates that a child already knows the material, the teacher can 

continue with chapter testing until a concept or skill pops up that needs work.  This is the 
simplest step to take, but it can be one of the most troublesome if the child progresses 
(almost inevitably) beyond the textbook for his or her grade.  There is a dilemma here:  
By providing an optimal level of instruction one year, a teacher may risk an even worse 
experience for the child in subsequent grades.  It is essential, therefore, to plan ahead and 
negotiate with future teachers and school administrators so that the child is not expected 
to repeat the same work later.  That would be the most devastating of all possibilities!  
Yet, it is untenable to argue that a child should be held back from learning what he or she 
yearns to master because a bureaucracy is too inflexible to adapt! 
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It is important, too, not to abandon children to their own resources as they work 
independently; keep track and keep in touch.  Otherwise learning may lag or become 
superficial, and children will resent the lack of attention. 

 
Mentoring 

 
For primary-age children, sometimes a math-interested parent, a high school or 

college student, or even a student from one of the upper elementary grades can be invited 
to help the young child with math-related activities for one or more hours a week.  Every 
teacher needs extra hands, and young children usually relish 1:1 contacts, especially with 
a Big Kid.  Our only caution here is to beware of the older gifted children's being 
imposed upon for these purposes to the detriment of their own opportunities for learning.  
Don't be oversold by the studies of older mentors who have profited from mentorship as 
much or more as their mentees; often, the older children involved have been those with 
learning difficulties themselves, and the benefits to older gifted children may be much 
more limited. 

 
If older children are used as mentors, or math-talented children are used as 

mentors for classmates, there are ways to make the experience worthwhile for them as 
well.  Children can, for example, profit greatly by coaching in teaching techniques such 
as question asking, wait time, using alternative explanations, and so on.  Feedback 
sessions will give them a chance to reflect on their skills as teachers, help them value and 
learn from the activity, and make them more appreciative and observant of their own 
teachers! 

 
Diagnostic Testing Followed by Prescriptive Instruction (DT-PI) 

 
A specific model of accomplishing acceleration for children advanced in 

mathematical thinking, a more formal version of the last two options described, is 
outlined for elementary school students by Lupkowski and Assouline (1992).  These 
authors, translating for young students the approach developed by Dr. Julian C. Stanley in 
his Study of Mathematically Precocious Youth (Stanley, 1990), describe mentor-based 
programs working from formal pre- and post-test assessments.  The DT-PI is a useful 
approach to acceleration with math-talented children in elementary grades and provides 
an interesting complement to the approach we will describe here. 

 
Learning Contracts 

 
Learning contracts are written agreements between teacher and child (or a group 

of children) establishing the parameters of an independent plan, including working 
conditions and acceptable behavior on the child(ren)'s part.  Usually, this will include 
some parts of the basic curriculum, some advanced enrichment activities that extend the 
concepts being taught, and some free choice.  Children can, in fact, often identify quite 
accurately what they need to work on, and they can certainly say what they'd like to work 
on. 
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Generally speaking, it's a good idea to keep contracts related to the saved-time 
domain, in this case, math.  It may not be "fair," for example, to punish math-talented 
children by having them spend extra time working on subjects with which they have 
trouble.  There are, however, creative ways to use mathematics to make connections with 
tasks the children favor less.  One might, for example, have children practice spelling 
with interesting math words, read biographical material about mathematicians or 
scientists or about the history of mathematical discoveries, or inventory the manipulatives 
or science equipment in the classroom (to practice handwriting).  Certainly, if the child is 
eager to work on a major non-mathematics related project during contract time, there is 
no reason not to encourage this. 

 
Math-advanced children, just like other children, need the kinds of skills, 

strategies, and knowledge that take repetition, although they may need less practice than 
the others.  Many bright children are more interested in concepts than skills.  Once they 
understand something they've had explained, they are impatient to move on—but they 
may not "own" the concept or skill quite yet.  One might ask the child to explain or write 
rules or draw pictures so that another child could understand.  The teacher will surely 
embed practice with skills and strategies in the assigned problem-solving activities.  But 
math-advanced children shouldn't be permitted to talk their way out of learning number 
facts and procedures to the point that they become automatic, that is, capable of being 
retrieved from memory without having to be figured out each time.  This automaticity is a 
great asset as one solves new problems, for it reduces the effortfulness of the process, and 
enables the child to keep focused on the ideas rather than the details.  A child who has 
number facts readily available will be more likely to detect relationships among numbers; 
for example, the numbers 63 and 81 will immediately be seen as members of the "9 
family" by the knowledgeable child.  Once these number facts are solidly in place, 
however, nothing much is to be gained by further practice. 

 
Activities to Extend the Math Curriculum Without Driving the Teacher Crazy 

 
There are a great many sources of ideas for math-related advanced enrichment 

activities aside from those teachers invent for themselves.  One great place to start is the 
Addenda series of publications from the National Council of Teachers of Mathematics, 
some of which are listed together with other resources in the Annotated Bibliography at 
the end of this book.  In addition, teacher and children can devise a whole array of 
problem-solving activities using materials already at hand or some the child can bring 
from home (e.g., sports pages from the newspaper, utility bills, road maps, small foreign 
coins). 

 
Figure 1 presents a few ideas of assignments that could be used to extend 

concepts being taught in class.  The extensions included here range widely in difficulty 
level—just as do the abilities of "math-talented" children in the primary grades.  They are 
presented as a way of getting teachers started thinking of ways to embroider upon an 
existing curriculum in order to provide advanced enrichment possibilities for their 
students.  In addition to such teacher-generated ideas, however, it is well to remember 
that the children may have excellent ideas of their own.  Most math-talented children 
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have an accurate idea of what they do and do not know.  One might, for example, ask 
children who would clearly be underchallenged by a worksheet of simple addition facts 
to make up a harder set of problems for themselves, or if there are two children who are 
working at about the same level, to make up problems for each other.  The same children 
may be good sources of ideas for projects to accomplish, though they will need help in 
reviewing the projects for feasibility and modifying them accordingly. 

 
 

CLASS IS LEARNING ADVANCED ENRICHMENT ACTIVITY 

Combinations to make 10 * Using the 4 operations, find how many ways 
one can make 10 from combinations using the 
number 2. 

* Write equations for these. 
* Extend the above to make other numbers (5, 12, 

41, 64, 0, -2). 
* Using Cuisinaire materials with the orange rod = 

1 rather than 10, what is each of the others 
worth?  On graph paper, graph these 
combinations. 

* Combine dice to = 10.  For each number, 2-12, 
find how many combinations one can make with 
2 dice to equal that number.  What is the 
probability of getting each combination?  Each 
number? 

 
Adding single digits * Plan a trip to the state capitol using highway 

maps.  Freeway versus state routes?  Other 
trips? 

* Use missing addends:  If traveled this far, how 
much is left? 

* Rate:  How many hours by freeway?  State 
routes?  Stop for lunch? 

 
Subtracting single digits * Reframe subtraction as adding negative 

numbers.  Think of as many examples as you 
can of subtraction and/or negative numbers in 
real life and make up story problems. 

* What is the difference in age between the oldest 
and youngest child in the classroom? 

 
 
Figure 1.  Ideas for expanding math curriculum after compacting. 
 

(figure continues) 
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CLASS IS LEARNING ADVANCED ENRICHMENT ACTIVITY 

Estimating * Make estimating jars for class, filling with 
manipulatives, or any available objects.  Have 
students bring objects from home.  Figure out 
strategies to increase accuracy (e.g., weight, 
volume, length). 

* Ask:  What makes estimating easier or harder? 
 

Rounding numbers for place 
value 

* Adapt a board game (e.g., Parcheesi) by 
requiring that a problem card be answered 
before each turn. 

* Individualize pack for each child or group.  Try 
999 or 9,972 to nearest 10 or 100; 4 x 3 x 2 to 
nearest 10; -8 to nearest 10.  Use fractions, 
decimals, rounding down. 

 
Exploring 1/2, 1/4 * What is a "quarter?"  How much is a quarter of:  

an hour, a mile, a kilometer, a quart, a cup, a 
liter, a moon, a year, a dollar, a roll of quarters? 

* Cut an apple in quarters.  Does each weigh 
exactly the same? 

* Explore thirds, fifths, and sixths. 
* Find real-life contexts for fractions (e.g., music, 

cooking, making change). 
* Explore multiplying fractions using pattern 

blocks (e.g., 1/2 of 1/4). 
* Make patterns with halves and quarters of 

shapes. 
* Use geoboards and tangrams to explore 

fractional parts of shapes (e.g., 1/2 of a rectangle 
= a triangle). 

 
Dividing by single digits * Bring in family's utility bills.  Average per 

month? Season?  Per person? 
* Collect small foreign coins, if available.  Look 

for value in newspaper and monetary system in 
World Almanac.  Coin's worth in cents?  
Dollar's worth in coins? 

* Play "store" with foreign prices. 
 

 
Figure 1.  Ideas for expanding math curriculum after compacting (continued). 
 

(figure continues) 
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CLASS IS LEARNING ADVANCED ENRICHMENT ACTIVITY 

Mosaic patterns * Tessellating or quilting patterns. 
* Analyze tiles in floors or elsewhere in school. 
* Use computer software to generate tessellations. 
 

Computation worksheets * Have children figure out why they made the 
mistakes they did (bugs) or look over class 
papers (names removed) to find most frequent 
bugs and report to class (use frequencies and 
histograms to present data). 

* Have children write ways to check answers 
(complementary procedures). 

* Have children write story problems from these 
computation problems or make up more 
complex problems and write those in story form. 

* For multi-digit addition problems provide the 
answer and leave blanks in the two addends. 

 
 

Figure 1.  Ideas for expanding math curriculum after compacting (continued). 
 
 

Smorgasbord Options Between Classes 
 
The next several possibilities involve matching children with classrooms to 

achieve an optimal match. 
 

All-School Math 
 
Using the Joplin Plan (sometimes known as "All-School Math" or "cross-grade 

grouping"), a school can achieve an optimal instructional match for all students.  
Everyone in the school does math at the same time; classes are arranged in order of 
advancement within the curriculum.  The developmental steps between groups are 
smaller than full-grade steps, permitting students to move ahead (or behind, if need be) 
without making great leaps likely to create gaps. 

 
Such an approach requires all teachers to collaborate in creating a developmental 

continuum for instruction, with children placed almost irrespective of their home grade.  
The highest group in the school has no limits in instructional level except those 
appropriate for the children.  Because the students in a given group are all at about the 
same developmental level in math, the teacher and children can target a topic more 
effectively than if the children are ability-grouped within the classroom, the teacher 
spending time with only one group at a time (Gutierrez & Slavin, 1992). 
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This approach does, however, require the cooperation of teachers and 
administrators in agreeing to when and for how long math will be taught.  The problem of 
the older child whose math achievement is at a low level has to be handled tactfully.  
Finally, the plan doesn't lend itself well to integrated instruction across disciplines, 
although that can occur at other times during the day.  Yet, its advantages are many and it 
deserves serious consideration. 

 
Cluster Grouping 

 
Arrange classroom assignments so that the most highly capable children are 

placed in one classroom (or possibly two classrooms) at each grade level.  In a school 
with three or four classrooms per grade, typically, the most capable students are 
distributed among all the classrooms, complicating both their lives and their teachers'.  
Cluster grouping facilitates the brighter children working together cooperatively, 
sparking each others' ideas, and giving their teacher a chance to work with them as a 
small group on more advanced material.  Cluster grouping is informal and can change 
from year to year.  It is well suited to children who are more advanced in some domains 
than others.  In cooperative learning groups in which more advanced children work 
mainly with those who are less advanced, the advantage is almost wholly for the latter, 
but cluster grouping of math-talented children (see Kennedy, 1995) assures that peers 
who can indeed provide advanced ideas and provocative questions for one another have a 
chance to do so.  Yet, because the children constitute only one cluster within a 
heterogeneous classroom, they accrue the social advantages of being with a diverse group 
of classmates. 

 
Ability Grouping Within the Classroom for Core Instruction, Especially for High 
Ability Students 

 
Faced with a primary classroom full of children whose developmental levels 

easily range as much as five grade levels, most teachers already do some ability grouping 
for reading and math instruction.  Because it is so familiar, we needn't discuss this 
practice here except a reminder that, even within the highest third of students, the range 
of achievement can still encompass several grade levels.  Compacting, contracts, 
acceleration, and enrichment in a variety of combinations will still be needed. 

 
Multi-Age Classrooms 

 
Multi-age classroom grouping is a general term for several different approaches to 

teaching.  "Split grade" classrooms generally maintain the distinct curriculum of each 
grade and can have real advantages for gifted children who are thereby exposed to older 
children and more advanced curriculum, but only if they are in the lower of the grades 
involved.  To spend two years in a 2-3 split classroom has little long-term advantage, but 
to spend successive years in 2-3, 3-4, and 4-5 classroom organization may have.  
Eventually, one would expect the child to move up a grade, and this structure provides a 
gentle path to that outcome.  Otherwise, the child ends up essentially repeating the final 
grade in the sequence. 
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Other multi-grade approaches present, at least for much of the day, a common 
curriculum for all the children, although not all are expected to respond at the same level.  
This kind of approach can potentially provide unlimited "top" for children, but in fact the 
mixing of ages usually succeeds in so increasing the heterogeneity of the class makeup 
that providing for individual children taxes teachers severely.  Many multi-age 
classrooms use interest centers that can give children appropriate options, but the most 
advanced children tend to "use up" such options very quickly.  Even among the talented, 
the less confident children may not choose the more challenging options unless asked to 
do so. 

 
Trading Students:  Subject-Matter Acceleration 

 
If a child in a second-grade class would be better instructed in one or more 

subjects at the third-grade, fourth-grade, or fifth-grade level, perhaps a colleague could be 
talked into that possibility. 

 
One shouldn't limit one's imagination!  We became acquainted with one eight-

year-old several summers ago when a professor in the University of Washington 
Department of Mathematics called us for advice after discovering the boy in his calculus 
class.  The third-grade teacher of this Vietnamese former boat-child had seen to it that he 
could complete precalculus courses at a nearby community college the previous year.  
When he applied for summer school, submitting his transcript, it was assumed that the 
birthdate must be a typographical error!  A combination of subsequent full-time 
placement in a challenging program for gifted children and tutoring by a high-school 
calculus teacher to encourage playfulness with practical applications of higher math, 
permitted this child to complete second-year college instruction in math as well as some 
science classes by the time he was 11.  How many of us would think this was possible, or 
healthy?  It was both, as this friendly, exciting youngster proved as he developed into a 
strong, warm, gentle, happy, and high-achieving young man. 

 
At the same time, especially in the primary grades, one needs to take into account 

whether a young child can really keep up with older students in ways other than the 
central abilities for which a teacher is trying to find a match.  One needs to consider 
whether, for example, the child has the fine motor skills to keep up with the written 
computation expected and whether the expected level of reading is appropriate.  Some 
allowances may need to be made or extra assistance given.  Especially in math, it may be 
easier to find a good fit in this way than it would, for example, in a writing class, but it's 
asking for trouble just to plunk a student down in a higher class and expect everything to 
work out automatically. 

 
Early Entry to Kindergarten or First Grade 

 
Most educators are leery of enabling children to cross age barriers, as though 

calendar age was the ultimate piece of knowledge one could have about a child.  Age is, 
of course, important, but is it all we need to know to place a child in school?  Consider 
that our laws generally dictate that, unless we go through lengthy procedures to override 
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the system, we must admit to kindergarten a child who may have been born three months 
prematurely on August 31 (due perhaps in late November) and must exclude a highly 
capable child, born full-term on September 1, who understands multiplication and is 
reading at the fourth grade level.  (States vary in their cut-off dates.)  Is this a reasonable 
position?  The research evidence (see Robinson & Weimer, 1991) overwhelmingly 
demonstrates the wisdom of welcoming into kindergarten or first grade children who 
can't jump the birthday barrier, but are otherwise mature, intellectually advanced, at least 
average or better in fine and gross motor skills, and on their way to reading and 
computation.  Careful assessment is necessary and there are many factors to consider—
but early entrance is clearly a viable possibility for helping to achieve, for a while at least, 
an optimal match for children who are eminently ready for school. 

 
Skipping a Grade 

 
While generally less limited by law than in making decisions about early school 

admission, most educators resist double promotion, or grade-skipping, no matter what 
children's academic achievement levels are and, indeed, no matter what their social skills 
or the ages of the friends they spontaneously seek out (Jones & Southern, 1991).  Most 
bright children do seek older friends and share with them academic interests as well as 
play interests, hobbies, and ideas (Robinson & Noble, 1991).  Advancement by one grade 
when a child is young may take up a good bit of the slack between grade placement and 
developmental level for a child who is moderately ahead.  Kindergarten, first, and second 
grade are good candidates for skipping when children's academic skills are quite 
advanced, since in most schools, third grade sees the introduction of cursive writing, 
more complex thinking about math, and transition to more abstract aspects of reading, 
with most basic skills firmly established.  Later on, eighth grade is often a good choice, 
since its curriculum is generally not particularly distinctive and it constitutes the 
transition year before students transfer to high school. 

 
The research about grade acceleration is overwhelmingly positive with respect to 

capable children whose advancement is in several domains, not just math (Kulik, 1992; 
Kulik & Kulik, 1984; Rogers, 1992; Rogers & Kimpston, 1992).  Children's academic 
achievement on average profits to the extent of acceleration—those who are accelerated 
by a grade achieve a whole grade higher than do equally bright children who are not 
accelerated.  And what about their mental health?  The evidence here is again very 
consistent.  There are no overall differences in the self-concept and mental health of 
children so accelerated, compared with their non-accelerated peers.  One might argue, 
indeed, that since the accelerated children's social comparison groups are composed of 
children older than they are, they might be expected to see themselves less favorably, a 
"littler fish in a bigger pond" rather than "bigger fish in a littler pond" (Marsh, 1987).  If 
their self-concepts are comparable to those of non-accelerated bright age-peers even 
under these conditions, they can be seen as doing very well. 

 
Grade skipping won't create an optimal match forever.  Children who are a grade 

ahead as they enter school will be several grades advanced later on.  For example, a child 
whose development is roughly 25% more rapid than that of her agemates may, at age 6, 
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be a grade or so advanced but, at age 12, about three grades ahead.  More immediately, 
primary-grade children who are distinctly advanced in their mathematical capabilities 
will still need attention and advanced enrichment opportunities, since their skills may be 
considerably more than a single grade ahead. 

 
Pull-Out Programs and Resource Rooms 

 
In some school systems, children who are advanced in one or more domains are 

"pulled out" of their own classrooms for special group instruction, typically from an hour 
to a day a week.  When the curriculum is sufficiently deepened, differentiated from, and 
advanced beyond that of the regular classroom to accommodate the needs of the children, 
such placement can be effective and healthy (Delcourt, Loyd, Cornell, & Goldberg, 
1994).  Such programs can incorporate mentoring and long-term project development that 
are difficult to provide in a regular classroom.  In fact, however, such pull-out programs 
seldom provide core instruction in mathematics and it is still the job of the regular class 
teacher to make the kinds of adaptations we've talked about. 

 
Furthermore, some pull-out programs, because they must adapt to children from 

so many different settings, tend to resort to "fun and games," extra field trips, and non-
academic activities to keep children's interest high.  In doing so, they not only court 
jealousy from other parents and students for whom the activities would be equally 
appropriate, but do not provide sufficient academic pay-off for bright children to make up 
for the disruption and expense they cause the system.  In an atmosphere like the current 
one, with tight school budgets and political issues about "elitism," pull-out programs 
(which are always expensive) are highly vulnerable. 

 
Special Classrooms 

 
This is not the place for a discussion of the provision of self-contained classrooms 

for highly capable children.  We point out, however, that in large districts, such programs 
may well be the easiest way to establish settings in which children's advanced 
development can be enhanced.  In such classrooms, the "normal" pace of instruction is 
more rapid; the basic curriculum can be covered quickly by all the children; and the kinds 
of extensions engaged in by only a few children in a regular classroom will be useful for 
everyone.  Children in special schools and separate classes show substantially higher 
levels of achievement than both their gifted peers not in programs and their gifted peers 
attending within-class programs, though they may be somewhat more reliant on teacher 
guidance (Delcourt et al., 1994). 

 
While the range of abilities in self-contained classrooms will still be very high—

because the most advanced children may be several grades ahead in one or more 
domains—the open-ended strategies described in the remainder of this book, strategies 
that can simultaneously engage children at several levels of competence, are likely to be 
less demanding of teacher energy when the range of ability goes from above-average to 
sky-high rather than below-average to sky-high!  Self-contained classrooms, especially 
those with class sizes equivalent to those of other classes, are, of course, much less costly 
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than pull-out programs, since they utilize the basic education budget.  Furthermore, they 
are less likely to be political targets because it is clear that the children are working at 
least as hard as, often harder than, their agemates, on learning tasks that would overtax 
other children. 

 
Teacher Consultants/Enrichment Specialists 

 
Some school districts, both rural and urban, successfully employ specialists to 

assist regular classroom teachers in planning and executing activities appropriate for 
gifted children, right in their regular classrooms.  Supporting the classroom teacher by 
bringing books and materials and, above all, new ideas, and sometimes by brief 
instruction of the children themselves, these specialists can make a significant difference 
in the ability of schools to meet a child's needs.  Two of the nice features of such an 
approach are its flexibility and the opportunities it furnishes for teacher and specialist to 
brainstorm and plan.  Children need not be formally selected or labeled as gifted, and 
children with uneven development can be readily accommodated.  Often, there will be 
one or more unlabeled children who are attracted to the special activity and who thereby 
reveal themselves as advanced in ways that had not been previously apparent.  Staff 
specialists are add-ons to the school budget and therefore not always available within a 
district, although such persons often may be found in state or regional service centers if 
teachers look for them. 

 
Open-Ended Strategies in the Classroom 

 
Thus far, we have touched very little on the real life of the classroom, the 

interaction of teachers with children, and children with children.  It is in the climate, the 
community, the shared delight in the discoveries of the mind, that a setting is created in 
which learning can occur.  And it is in what Kennedy (1995) has called a "gifted-friendly 
classroom" that children will want to learn.  In a gifted-friendly classroom, gifted 
children feel valued and comfortable, protected from teasing and from the expectation 
that they are in all ways "perfect."  Teachers in gifted-friendly classrooms are not 
compelled to limit their vocabulary, jokes, and ideas to those that all children will grasp, 
but occasionally float ideas and tasks that only some children will appreciate.  Teachers 
in such classrooms also encourage learning for its own sake, reward children for 
struggling with complex ideas, and hear children out when their ideas are incomplete or 
initially seem off-target.  Gifted-friendly classrooms are friendly places for all children. 

 
What we will describe in Chapters 4 through 7 is, like the options discussed 

above, part of a smorgasbord of options for math instruction.  It is, however, also an 
underlying agenda, for the strategies we will describe can help to create child-friendly 
classrooms in which problem-posing and problem-solving are open ended and suitable 
for the simultaneous engagement of children at many levels of mastery.  In creating a 
climate of warmth, acceptance, safety, and respect, a community of learners who track 
and take pride in their own mastery, but do not measure their worth by comparing 
themselves with others, teachers can set the stage for such an open-ended approach 
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capable of challenging advanced learners.  Such classrooms are fun for both teachers and 
children and constitute good places to grow. 

 
Conclusion 

 
Achieving an optimal match for math-advanced children can and should take 

many forms.  This smorgasbord of strategies merely scratches the surface.  As 
mathematics education is being reformed (e.g., National Council of Teachers of 
Mathematics, 1989), its greater flexibility, its multiple goals and strategies, and its real-
world orientation are all beautifully suited to a learning community in which math-
talented children can thrive.  Teachers who watch and listen to the individual children 
soon give up their preconceptions of what children in a specific grade "are like," 
preconceptions often created by adherence to linear, underchallenging, and unimaginative 
textbook-driven curricula. 

 
Math-talented children are particularly fun to listen to.  In every classroom there 

lurk children who are in love with math, or who can be, and whose capabilities just don't 
fit the mold.  They are very much worth the trouble it takes to teach them well. 
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CHAPTER 4:  The Math Trek Curriculum—Philosophy and Practice 
 
 
Rachel and Tanya had just worked for about an hour on a project they had 

devised, figuring out how many chips of each color there were in the Chip-Trading 
Game, and how many points that added up to for each color.  (See Appendix B for a 
description of this game.)  Together, they ran over to their teacher to share their findings.  
Their teacher marveled with them over their discoveries and the strategies they had 
invented to keep track of their data and then suggested other problems to pursue.  She 
stayed with them as they worked on these problems, some of which involved visualizing 
squared and cubed numbers with Multilinks (cubes that link together in multiple ways).  
The level of energy and excitement was high.  As Rachel played with solutions she 
turned to her teacher and said, "This is great!  I never knew math could be so many 
things." 

 
To some extent, this example symbolizes the goals of Math Trek:  To nurture 

advanced mathematical talent by helping children to become autonomous in their 
learning, to work well together, and to share their mathematical discoveries with each 
other.  How did these children come to be able to pose a problem, immerse themselves in 
that problem, devise strategies and flexibly use materials to represent solutions, and find 
such joy in the process? 

 
Certainly the children themselves played a role; they came to us curious and 

interested in math, more knowledgeable about the mathematical system than other 
children their age and, most of them, open to our ideas and activities.  The teachers, for 
their part, were open to and curious about the children and their intellectual interests and 
diverse ways of approaching math.  There were also some very conscious ideas and a 
body of research that informed the philosophy and guided the practice of the Saturday 
Clubs.  As mentioned previously, Dr. Swapna Mukhopadhyay, a mathematics educator 
from the University of Washington, was in charge of the training of Math Trek teachers.  
She conveyed great respect for children's thinking and sense-making abilities and offered 
many creative activities and questions to pose to the children.  She also inspired the 
teachers to create innovative problems and to ask children probing questions that would, 
in turn, inspire their own thinking. 

 
The authors' philosophy was informed by their own research into children's 

mathematical thinking in the area of negative numbers, stories for equations 
(Mukhopadhyay, 1995; Mukhopadhyay, Resnick, & Schauble, 1990) and place value 
(Waxman, 1996), as well as by their reading of Duckworth (1996), Kamii (1989, 1993), 
Cobb and Wheatley (1988), Schifter and Fosnot (1993), Gardner (1983, 1989), and 
Rogoff (1990), among many others.  What follows is a quick summary of key ideas. 

 
Beliefs About Learning 

 
Duckworth (1996) writes about four beliefs that are essential for children to 

develop about themselves if they are to be effective learners:  a) The "way things are" 
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beliefs, for example, that both addition and multiplication are commutative (i.e., 3 + 4 is 
the same as 4 + 3), but division and subtraction are not; b) "It's fun" beliefs, as in, it is 
enjoyable to shrink and stretch the number line and to see what happens when you try to 
think of all the numbers between 0 and 1 or all the numbers between -50 and +50; c) "I 
can" beliefs, such as "I can continue the Fibonacci sequence into the hundred thousands 
place"; d) "People can help" beliefs as in, "If I'm stuck on this problem I can ask another 
child, the teacher or an aide." 

 
Multiple Abilities or "Intelligences" 

 
Another important set of ideas comes from Howard Gardner's (1983) concept of 

multiple intelligences, that is, the idea that intelligence is multifaceted and that each child 
has strengths and weaknesses in different domains.  Given the nature of this study, we 
knew that the children were all strong in the logical-mathematical domain.  We quickly 
found out on our own what the testing also revealed, that most of these children were also 
advanced in the visual-spatial and verbal domains.  Gardner identified other domains of 
intelligence including the musical, the kinesthetic, the interpersonal and the intrapersonal, 
domains in which this group was more variable. 

 
By involving multiple domains in learning, children are able to strengthen each 

type of intelligence as well as to understand more deeply the particular concept or skill 
being studied.  For these reasons, we encouraged the children to talk and write and draw 
and enact their understandings of particular concepts and by doing so, to make use of 
their verbal, visual-spatial, and intrapersonal (reflective) intelligences.  In one class, 
children put on a play about probability.  In several classes, part of recess was devoted to 
a kinesthetic enactment of numerals as well as lots of estimating activities ("How long do 
you think it will take you to run across the room?" or "Count how many hops it takes to 
get you to the other side.").  Children were also asked to keep records of their work using 
drawing, writing, or a combination of both.  By representing their knowledge in different 
media, children become engaged in a different sort of problem-solving, one that 
encourages a deeper understanding of the subject (see Chapter 7).  And, as an added 
bonus, asking children to represent their knowledge also encourages the formation of the 
beliefs about learning discussed above. 

 
Play and Playfulness 

 
Another important idea informing our work with the children was the importance 

of both play and playfulness (Mukhopadhyay & Waxman, 1995).  By play, we mean 
several things, from plenty of time just to "muck around" and explore the qualities and 
relationships of materials and activities, to systematically exploiting variations and 
permutations, to practicing a newly acquired skill.  Lainie, for instance, came in each 
week with her latest trick to memorize the multiplication table, which she would then 
practice for many minutes at a time.  Joni, as described below, spent the first half hour of 
every session constructing a pattern with whatever materials were available.  That each 
pattern was a take-off on her last one cued us that Joni was methodically exploring the 
structure of patterns.  And Peter delighted in varying the mathematical challenges posed 



31 

 

in board games.  For instance, when playing Monopoly, he doubled the value of the 
properties and based all his calculations on the doubled property value.  (No doubt he'll 
be prepared to live in a city with expensive real estate!) 

 
By playfulness, we mean an attitude toward mathematics that entertains all 

possibilities, including humorous ones.  Indeed, there was much laughter during the 
Saturday Clubs as children made connections, struggled with concepts, and shared 
discoveries.  For instance, during a discussion of right angles, one child piped up, "So, 
what are left angles?"  During one of Swapna's visits to a class, the children decided they 
wanted snacks of carrot sticks for a change.  Swapna posed the question, "If we were to 
have five sticks each, how many carrot sticks would I need to bring in?"  The children 
readily figured out the answer, generously including Swapna as well as the teaching staff.  
Swapna then posed a variation on the problem:  "Well, how many should I bring in if we 
were each to get seven carrot sticks?"  By posing this question, Swapna not only made 
them work harder (seven is far harder a number to compute with than five), she showed 
them that one can vary a problem in a playful yet challenging way.  And she followed up 
by bringing to the next session the number of carrot sticks they calculated!  Playfulness, 
then, was not just the province of the children; the teachers also manifested a playful 
spirit about math, thereby setting the tone for the classroom. 

 
Problem-Posing 

 
Closely related to the idea of play is the idea of problem-posing, that is, inventing 

a problem or challenge as did Peter, Rachel, and Tanya (see above).  These inventions tell 
us much about children's intellectual agendas, their often hidden mental life.  All children 
need some unstructured time to get to know materials and "play" or "mess around," and 
they need to return to play at different stages with the same materials.  Very often, when 
observing children's messing around, you will see that they are posing problems for 
themselves, and that the kinds of problems they pose change in complexity over time.  
Thus, children's problem-posing gives us a great assessment tool.  By examining the sorts 
of problems children invent for themselves, we can readily see their current mathematical 
agendas, that is, the nature of the concepts and skills they are attempting to master.  By 
observing children's problem-posing we can more readily create the optimal match 
discussed in the previous chapter. 

 
Problem-posing is not limited to materials or games.  Children also pose problems 

by extending problems given to them, so long as those problems are open-ended and 
challenging enough to suggest other avenues to pursue.  Indeed, problem-solving and 
problem-posing are intertwined processes and arise from the same rich contexts.  One of 
our tasks, then, as teachers, was to figure out how to construct those rich contexts and 
which strategies were most conducive to eliciting children's problem-posing.  We found 
that collaboration with peers, allowing dead-time, acknowledging frustration, and 
supporting experimentation through questions and hints fostered the children's problem-
posing. 
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Creating an atmosphere in which children's problem-posing is respected and 
allowed to flourish also leads to cognitive empowerment and to finding one's own 
intellectual voice, key ingredients in nurturing mathematical talent (Mukhopadhyay & 
Waxman, 1995).  By cognitive empowerment, we mean the capacity to take one's own 
ideas and others' ideas seriously and to be able to sustain inquiry into challenging, 
problematic, and even confusing issues.  By finding one's own intellectual voice, we 
mean developing a line of inquiry, an approach to problem-solving and a style of 
expression (e.g., a favored medium such as drawing or use of patterns) that becomes 
almost a signature of that child.  The remaining chapters of this book are studded with 
examples of cognitive empowerment and children finding their own intellectual voice, 
especially in the character profiles in Chapter 8. 

 
Sense-Making, Model Building, and Understanding 

 
Another premise that guided our practice is an obvious one, but one that should 

never be taken for granted:  that these children (and all children) are engaged in making 
sense of mathematics (Kamii, 1993).  They came to us, young as they were, with many 
ideas and intuitions about mathematics already formed—ideas about number, 
numeration, operations, and shapes.  Our task, then, was to figure out what sense they 
were already making of mathematical topics, and to engage them in further sense-making 
activities.  We also wanted these children to become comfortable communicating their 
sense-making to themselves and to each other. 

 
One feature of children's sense-making involves the building of mental models 

that represent non-obvious phenomena they encounter such as electricity or barometric 
pressure.  These models are often incomplete or inchoate and require a rich context, a 
community of learners, and good questions in order for children to explicitly formulate 
their models and to test them through explorations and experimentations.  This process of 
articulating, testing and sharing enables children to become better sense-makers.  As 
teachers, our goals were to provide the conditions for this process and to make sense of 
the children's sense-making.  In order to accomplish the first goal, we provided materials, 
fostered a community of learners, developed good questions, and listened (and watched) 
intently for how the children reasoned, struggled, and questioned.  Listening and 
watching also helped to accomplish the second goal, along with our journal writing and 
meetings where we discussed what we had observed. 

 
We were also well aware that the road to understanding pivotal math concepts can 

be a long and sometimes frustrating one, even for math-talented children.  While rote 
understandings of concepts and skills prove to be fairly easy for these children, a deep 
understanding of a concept occurs over a span of time and is often forged in stages.  For 
this reason, we revisited concepts and big ideas in different ways at different times.  
Exploring the same idea in different contexts helps children to extend and generalize their 
understandings.  This approach allowed time for what the psychologist David Elkind 
(1976) calls "horizontal elaboration," that is, thoroughly exploring and extending the 
meanings of a concept before moving on to the next level in the hierarchy.  At Math 
Trek, we wanted the children to make the biggest ripples possible when casting their 
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intellectual stones.  In Chapter 6, we describe our method of revisiting and elaborating on 
concepts. 

 
Inventing Procedures, Developing Number Sense 

 
Much of the recent research in the development of children's mathematical 

thinking supports the idea that children can and should invent their own methods for 
solving computational problems (Duckworth, 1996; Kamii, 1993; Schifter & Fosnot, 
1993).  By inventing their own procedures, children are engaged in problem solving even 
when doing computations and they are forced to think about the meaning of the numbers 
instead of relying on rote procedures that allow them to disregard the quantities the 
numerals symbolize.  Children's invented procedures reveal a great deal about their 
number sense, such as their ability to decompose and recompose numbers (for example, 
37 + 44 is the same as 30 + 40 + 7 + 4 which is 70 plus 11 which is 81), thereby 
providing a good assessment device.  In fact, inventing procedures helps children develop 
number sense for they have to figure out sensible ways to get answers.  If children 
attempt to adhere to the rules for algorithms without understanding the conceptual basis 
for those rules and without thinking about what numbers and operations mean, then their 
computational mistakes may result in answers that demonstrate a decided lack of number 
sense.  Therefore, at Math Trek, children were allowed the freedom to invent their own 
procedures.  They were also asked to share their ingenious strategies with each other, 
which gave them the opportunity to analyze verbally why their strategies worked.  
Through this approach to problem-solving, the participants were not only building 
number sense, they were building a community of learners, too. 

 
Defining the Teacher's Role 

 
The teacher's role needs to complement this view of children's learning as 

inventive, sense-making, model-building, and based on what children already know.  In 
this view, teachers are facilitators, guides, designers of challenging problems, and 
probing questioners.  The teacher's role also involves nurturing and sustaining the 
children's problem-solving and posing activity.  By nurturing, we mean allowing 
frustration and struggle to occur, and helping children to unpack and work through that 
frustration.  In this way, the emotional component of the frustration is rendered a 
cognitive issue (e.g., "No I can't do this!" becomes translated into "Oh, I can't do this 
because . . . but I can try this instead.").  By sustaining, we mean adding complexity to 
the problem situation so that children push the boundaries of their mathematical 
understanding.  Teaching in this manner requires constantly being open to the ways 
children are thinking, and to various mathematical possibilities that could be pursued.  In 
order to paint a fuller picture of what this sort of teaching looks like, we have filled the 
curriculum chapter with examples not only of what was studied, but also the kinds of 
questions the teachers posed and their responses to the children's mathematical thinking. 
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Teacher as Learner, Too 
 
The Math Trek teachers saw themselves as learners of mathematics, too.  Our 

own sense of what it's like to immerse ourselves in a mathematical problem, and our 
taking time to think things through both mathematically and pedagogically, helped us 
nurture and enjoy children's mathematical thinking.  (Sometimes we ourselves 
encountered and worked through temporary confusion—as for example, when we first 
tackled chip-trading in reverse.) 

 
The Role of Good Questions 

 
One of a teacher's most important tools is the ability to ask good questions, 

questions that can elicit a child's current understanding or gently push a child to consider 
other possibilities.  By virtue of asking the right question at the right time, a teacher can 
both figure out how a child is currently making sense of a problem and engender a 
cognitive conflict for a child to resolve.  Sometimes, the most intriguing questions would 
arise from playful interactions with the children or during a whole group discussion in 
which everyone, including the teacher, would be fully involved in a mathematical 
perplexity.  Because so many of the questions asked depended on the mathematical 
activity, the Big Idea being pursued, and the individual children involved, it is impossible 
to make a list of good mathematical questions.  However, in Chapter 6, we give you the 
flavor of these questions as they are embedded in the descriptions of the curriculum we 
used and our interactions with children around big mathematical ideas. 

 
A Word About Manipulatives 

 
While manipulatives are almost ubiquitous in primary math classrooms, 

controversy exists as to the role, function, and use of math materials.  At Math Trek, we 
were clear that manipulatives are tools for problem-solving and a means to represent and 
embody mathematical thinking.  Therefore, we never enforced a particular way of using 
the manipulatives; children were free to use or not use the materials available, and to 
invent their own strategies for making use of them.  Observing how the participants used 
the materials when left to their own devices provided important clues about their 
mathematical thinking, their insights as well as their misconceptions.  Sometimes 
children, particularly math-talented children, are heard to say they dislike manipulatives 
and find that they hinder or slow down their mathematical thinking.  However, when 
manipulatives are used flexibly and creatively to solve problems and to embody and 
communicate meanings, resistance to their use melts away and even very bright children 
become enamored with their possibilities. 

 
Importance of the Social Context in Learning 

 
While it is true that many talented young children are intensely creative and 

inventive in their mathematical thinking, it is also true that these children benefit greatly 
from working with peers and adults (Greeno, 1991; Lave & Wegner, 1991; Rogoff, 1990; 
Vygotsky, 1978).  Peers provide a stimulating source of theories, ideas, strategies, and 
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conflict.  Adults, including teachers, aides, and parents, can play various roles, such as 
guide or master thinker.  When children are working in a group, however small that 
group, interaction with peers or adults always involves thinkers at both similar and 
different levels.  This verbal and nonverbal exchange allows children to hear ideas and 
strategies that they have not thought of previously.  Some of the ideas may even be too 
advanced for direct teaching or immediate mastery.  The encounter helps the child to 
reach somewhat beyond his or her current level of thinking, into what Vygotsky (1978) 
has called the "zone of proximal development."  The more advanced peers (or adults) 
provide the necessary scaffolding to help the child reach to the next level.  Thus, children 
come to know much about math on the social and interactional plane; in time, they will 
internalize the knowledge and make it their own.  By the articulation they do in the 
group, the more skilled peers help themselves to internalize mathematical processes, for 
they are speaking as much to themselves as they are to others.  In the next chapter, we 
describe the ways in which we consciously fashioned the social context or climate of the 
Saturday Clubs. 

 
Conceptualizing Mathematics Broadly 

 
Teaching math requires not only thinking about how children learn, it also 

requires thinking about the nature of mathematics.  Mathematics is a rich, well-
structured, and organized domain that possesses interrelated parts.  Concepts do not exist 
in isolation, but are interconnected and embedded, thereby creating a coherent system 
(Scholnick, 1988).  We hoped that the children would come to conceptualize the world 
mathematically, to see all about them numbers, patterns and relationships, and to make 
sense of what, when they were younger, were bits-and-pieces of mathematical 
knowledge. 

 
What to Teach?  The Power of Big Ideas 

 
It is precisely because math is a rich and interconnected domain that we felt the 

Math Trek curriculum should focus on the central ideas that permeate many aspects of 
mathematics. We knew that in their own schools the Math Trek participants were getting 
plenty of exposure to the typical content of early mathematics curricula.  At Math Trek, 
we had the opportunity to try out some big concepts that underlie typical curricula but are 
seldom brought to the surface, as well as to explore concepts that are often considered too 
advanced for young children.  Thus, we structured much of the curriculum around big 
ideas such as equivalence, reversibility, and the visualization of numbers.  The 
participants' growing appreciation of the richness and interconnectedness of the math 
domain attested to the power of these big ideas. 

 
For instance, we explored the issues of numeration in different cultures.  We also 

explored the ways in which number can be used to represent shape (e.g., the golden 
rectangle) and the ways in which shape can be used to represent number (e.g., the Vedic 
Square).  Several themes were pursued periodically throughout the two years in different 
ways and from different angles.  For instance, an important aspect of mathematics is 
reversibility, a process which takes many forms and which results from the logical 
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structure of relationships that comprise mathematics (e.g., subtraction is the inverse of 
addition, division is the inverse of multiplication, equations lead to graphs and vice 
versa).  One way to challenge children and encourage flexibility and alternative ways of 
examining things is to ask them to go in reverse (e.g., in the game of chip-trading, to start 
with the end-point and attempt to get back to the beginning point—see Chapter 6), or to 
provide children with the answer and have them pose the question as in, "If 14 is the 
answer, what is the question?"  Sometimes we gave children an equation and asked them 
to create the story that would fit that equation.  In Chapter 5 we describe in more detail 
many of the big ideas that we pursued in the Saturday Clubs, as well as the ways the 
children responded to and extended them. 

 
Teachers' Beliefs About Mathematics 

 
As teachers, we needed to develop our own appreciation of the richness and 

interconnectedness of mathematics, and to view math in as broad a manner as possible:  
as a way of perceiving the world, as something one finds everywhere, and as a way to 
describe our world.  In this way, we came to see math as a humanistic endeavor as well as 
a scientific one.  Concretely, this meant relating math to other disciplines such as science, 
art, and literature, and helping the Math Trek participants come to see math in these 
broad and rich ways, too.  To that end, we spent a fair amount of time talking about what 
constituted mathematics and encouraging children to share their conceptions with us. 

 
We came back to that question many times over the two years, approaching it in 

many different ways.  For example, as discussed later on, at the end of each session we 
asked children to categorize their favorite activities by recording those activities in one of 
three books:  number, shape, or logic.  We also did an alphabet exercise in which we 
asked the children to identify a mathematical term for each letter of the alphabet, or to 
limit the list to particular concepts such as magnitude, shape, or number.  Such activities 
generated a lot of excitement.  At appropriate times, we asked the children how an 
activity we were doing related to math. 

 
We also asked the children, "What is a mathematician?" in an attempt to have 

them identify with the thought processes and strategies involved in thinking 
mathematically.  In discussing that question, children came to realize two things:  First, 
that they were indeed mathematicians and, second, that being a mathematician has to do 
with thinking, strategizing, and encountering new ways to view the world, not just speedy 
right answers.  In this way, we came to create a metacurriculum, the goal of which was to 
have children think about mathematical thinking in rich and flexible ways.  In this way, 
we also helped the children to generate higher-order knowledge: 

 
. . . what makes higher-order knowledge higher order is its aboutness.  Higher-
order knowledge is about how ordinary subject-matter knowledge is organized 
and about how we think and learn.  (Perkins, 1992, p. 101) 
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Aesthetics, Passion, and Transcendence 
 
As part of our effort to define mathematics broadly, we also wanted to include 

elements not often associated with mathematics—aesthetics, passion, and transcendence.  
Heady words for such young children, but still part and parcel of a full and rich 
experience of mathematics!  Take Joni and her pattern-creating.  Every Saturday Club, 
Joni, with the assistance of her good friend, Lauren, would immediately set to work 
making a huge and elaborate pattern with the colored inch cubes.  Joni was rather shy and 
did not speak much at all the first year of Math Trek.  It seemed that allowing Joni to 
choose her very own intellectual agenda was enormously satisfying to her.  Watching her 
work, one became caught up in how absorbed and intrigued she was.  Her teacher asked 
her once if she thought about what she was going to do before she came in.  She said, 
"No, it just comes to me when I sit down with the blocks."  However, each time, she tried 
something new, some variation on a pattern, or a reversal of a pattern she had created 
before.  Her strong aesthetic pull permeated her problem-solving style.  One day, 
following a story reading (see Chapter 6), Joni and the other children tried to figure out 
how many more apple trees would be included next year when Farmer Jane made her 
square orchard one size larger than the 36-tree square she had planted this year.  Joni 
used a color pattern that made the solution obvious to all the children. Joni's absorption in 
and enjoyment of her work, and her ability to emerge from her pattern-making to partake 
fully in the class all seemed to reflect what Foshay (1991) has entitled a curriculum of 
transcendence. 

 
Creating the space for Joni to engage with the materials in her own way and in her 

own time had a remarkable effect on this inordinately shy and reserved little girl.  By the 
middle of the second year, she was speaking up more often and gaining confidence in her 
own voice.  Her confidence was much deserved and it was a delight to watch the other, 
more vocal and assertive children come to respect her.  We learned later, in talking with 
her regular classroom teacher that, on the Monday following Saturday Club, Joni 
regularly shared with the class what she had learned and the activities she had performed 
at Saturday Club. 

 
How would a child like Joni define mathematics?  Brilliant though she is, it would 

probably be hard for her to articulate precisely her sense of mathematics.  We will 
attempt to do it for her.  Her conceptualization would include first and foremost the idea 
that there are meaningful patterns in the world and that people can create as well as 
respond to them.  She would emphasize that mathematics is something one could find in 
stories, in art projects, in science experiments, in building projects, in shapes, and in 
numbers.  For Joni, mathematics was also all about connections, the idea that there are 
connections among problems, among patterns occurring in nature, shapes, numbers, and 
even algorithms.  Her notion of pattern and sequence helped her to explain to the other 
children how one can use the regrouping algorithm in subtraction with objects available 
in the classroom such as Base-10 blocks.  She would also explain that mathematics is 
visual and aesthetic and something to be shared with others. 
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Open-Ended Curriculum 
 
Given our conceptualization of mathematics and our view of how children make 

sense of mathematics, open-ended activities characterized by multiple entry points and no 
ceiling on sophistication were the natural choice for nurturing mathematical talent for the 
children in the Saturday Clubs.  This strategy was designed to take advantage of the fact 
that we had a luxurious amount of time to spend on math (two and a half hours) and to 
help meet the diverse needs of a group of children with a two year chronological age 
range and various talents and proclivities.  An open-ended curriculum is also useful with 
a wide range of children, but particularly for those at the advanced end of the spectrum.  
The process of open-ended curriculum also affords the space and time to play. 

 
Structure of the Saturday Clubs 

 
While these children loved math, the truth is that these sessions were voluntary 

"extras" for which they had to get up early on Saturday mornings or give up their 
Saturday afternoons.  Often, their parents worked during the week and even at home time 
was precious.  Therefore, it was incumbent upon the teachers to make the sessions as 
enjoyable and as enticing as possible.  To that end, we worked hard not only on finding 
interesting activities and promoting positive group dynamics, but on structuring the time 
so that children were thoroughly engaged. 

 
When the children arrived, they found an assortment of materials laid out on each 

table.  At each table there were also new job cards that detailed particular problems or 
activities.  The children were expected to choose two job cards each session, to carry out 
the task or solve the problem on the card, and to record one or both of their activities in 
their journals.  Often, children would choose to work in pairs or small groups and to 
collaborate on their problem-solving.  If time remained, they were encouraged to pursue 
any quiet mathematical activity with materials or books not currently in use.  After this 
initial activity time, which lasted 45 to perhaps 60 minutes, the group came together for a 
meeting during which children were invited to share any discoveries or perceptions they 
had while completing their job cards.  Over time, the children came to enjoy this process 
and willingly shared their stories, creations, and problem-solving strategies.  Some of the 
children liked to make presentations together. 

 
After the sharing time, the teacher generally posed a problem or activity for the 

whole group to work on together, for about 30 minutes.  After this, the children were 
ready for recess which often included, for those who wanted it, a mathematical 
component such as timing runs, keeping track of rope jumping or ball bouncing, 
"Mathematical Mother May I" or solving more physical problems (e.g., everyone links 
hands, twists around and then figures out how to untwist). 

 
After recess it was snack time, yet another opportunity to embed mathematical 

activities in a real-life context.  For instance, the children were asked to estimate the 
number of cookies in the box, each person's share of crackers, etc.  Once the children 
were settled with their snacks, it was time for stories with a mathematical bent, of which 
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there are no shortages in children's literature (e.g., the Anno series by Mitsumato Anno, 
stories by Marilyn Burns and many others that are described in Appendix C).  During the 
second year of the program we used the Open Court Real Math series (for these first- and 
second-graders, using third- through fifth-grade level stories).  Real Math provides a 
wonderful collection of math stories that all use the same cast of characters but widely 
vary the mathematical situations that the characters (and students) encounter.  The stories 
provided many opportunities for the children to verbalize their reasoning and to problem-
solve jointly.  Sometimes, a few children chose to act the stories out for their classmates, 
or to demonstrate their reasoning by using the blackboard, manipulatives, or whatever 
props were at hand. 

 
After snack, there was time for one more activity.  At this point in the session it 

was very helpful to explore math through an art project or a science activity.  The ending 
section was also a time for children to write or draw in their journals, a natural closure 
and a way to share their activities with the parent who came to pick them up. 

 
In the remaining sections of this book we attempt to make this philosophy come 

alive by telling stories of our Math Trek Saturday Clubs.  In the next chapter, we discuss 
how the teachers set the climate.  We then give readers more of the flavor of these 
sessions by describing several open-ended activities that we used and how the 
participants responded to these activities.  These activities can easily be adapted for use 
in a regular classroom, for each has the virtue of being suitable and interesting for 
children at a variety of levels.  They may even help bring to the surface mathematical 
talent that was never suspected.  We then describe ways to integrate math with other 
domains in the curriculum.  Finally, we portray some of the different flavors of 
mathematical talent that we observed at Math Trek. 
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CHAPTER 5:  The Culture of the Classroom 
 
 
Picture a group of children sitting around a table eating a snack.  The story to 

which they are listening includes many word problems that they're solving as we go 
along; each child contributes and has something to say.  Sometimes a lively, good-
natured debate emerges, the children articulating well-reasoned challenges to each other's 
point of view.  At the end of the story the teacher asks them what all those problems had 
in common.  The children squirm a bit.  Finally, Jenny asks, "Why do you ask us 
questions that you know the answer to?"  The other kids chime in sympathetically.  The 
teacher thinks for a minute and says, "Well, I know what I think the answer is, but I don't 
know what you think or why you think what you think.  The only way I can find out is by 
asking you."  This answer seems to make sense to the children.  After a short pause they 
start to answer the teacher's question; through this discussion the children come to a 
consensus that the stories all involve logic.  One child insists that a character is illogical 
and should think things out better.  Another child agrees that the character should be 
more logical.  Yet another is thoughtful for a minute and says, "But it takes more than 
logic to solve these problems; it takes imagination.  You see, you have to be able to 
picture it in your brain; that helps you to see the answer." 

 
The above anecdote describes a group of seven-year-olds who have been meeting 

together 24 times over the course of two years.  Our first meetings together were not 
quite so cozy, sharing, and thoughtful.  Two children would never have spoken up at all; 
another child would have ventured an answer only if she was sure that she was right.  
How did they come to be able to share, take risks, and feel so comfortable?  How did they 
learn that it was okay not only to question themselves and each other, but their teacher, 
too? 

 
This question goes to the heart of a central issue in mathematics education and 

perhaps all of education:  How to set a climate in which all children feel valued and 
respected, able to take risks, share their thinking, pose their own problems, and extend 
problems posed for them.  Teachers have a great deal of leeway and control in terms of 
how they want to create the climate in their classrooms.  They can find a way to create a 
climate that empowers all the children in their classroom to take risks and to be active, 
not passive learners.  All kinds of decisions, even curriculum and instruction decisions, 
flow from the type of climate or classroom culture that teachers decide to set. 

 
How to Set a Climate That Empowers 

 
Of course, it takes time, and lots of it, to build trust and a sense of ease.  In 

addition, there are helpful strategies teachers can use (see Appendix D).  One important 
strategy is to ensure that everyone's voice is valued by giving every child in the class a 
chance to be heard.  In some classes, it is mainly the boys who raise their hands 
assertively and demand to be called on.  One technique is to say to the class, "I'm 
interested in what everyone in this class is thinking.  So I'm going to wait until everyone 
has thought through this problem."  In reality, some children's minds work faster than 
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others; however, quickness does not guarantee brilliance.  Some children, given enough 
wait time, manage to create wonderful problem-solving strategies and to come up with 
insightful perceptions.  Waiting for everyone to generate an answer lets children know 
that something besides speed is valued. 

 
Wait Time as Empowerment 

 
If some children seem bored by the wait time, it's fine to suggest another problem 

they could be thinking about.  Alternatively, you could ask children who seem to process 
more quickly to find more than one way to solve the problem that was posed.  This issue 
also comes up when children play games such as chip-trading (see Chapter 6).  Some 
children quickly develop strategies that allow them to figure out what chips to ask for and 
what trades to make.  Other children, however, take their time or want to see all their 
chips before they ask for a trade.  The quick children often tell the slower children what 
they should ask for and which trades to make.  Permitting such behavior is demeaning to 
the child who takes a longer time but who is perfectly capable of ascertaining what trades 
to make, and is a license for rudeness for the quicker children.  Again, we don't want 
children to equate speed with brilliance. 

 
In addition to providing alternative questions and activities for quickly processing 

children to answer, it's also important to have a continuing conversation with children 
concerning good ways they can make productive use of their time without bothering 
others when finished with the question or assignment at hand.  Bringing children into this 
discussion helps them take responsibility for their learning and their behavior.  It also 
acknowledges their facility with solving problems and the potential boredom that 
accompanies such speediness.  For gifted children in regular classrooms, this is an issue 
of enormous significance:  How do they handle the usual pace of a classroom designed 
for children learning less rapidly than they do?  All too often, boredom becomes a way of 
life when both they and their teachers could avert it. 

 
One enterprising girl figured out a way to handle her boredom during a group 

discussion at one of the Saturday Clubs.  While most of the children were fully engaged 
in this discussion, this girl was not.  A bag of dice lay on the table where Laura was 
sitting.  She carefully turned each die so that the "six" was on top.  Then she lined up the 
dice and counted how many dice there were.  Then she posed the following question to 
herself:  "If there are 24 dice, and they are all on six, how much is that all together (i.e., 
24 x 6)?"  The discussion ended shortly after Lauren began to find her answer.  A number 
of the other children became curious about her problem and elected to help her.  There 
ensued a busy ten minutes of problem-solving for about six children. 

 
This discussion can also include children's emerging theories of intelligence (see 

Dweck & Bempechat, 1983).  Some children believe that being smart is simply a matter 
of ability (which Dweck calls an "entity" theory of intelligence), while other children 
believe that being smart is a matter of working hard (an "incremental" theory of 
intelligence).  Clearly, a belief in working hard will get children further than a belief in 
ability, which can lead to merely resting on one's laurels.  This is a particularly important 
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message for math-talented children for whom many mathematical skills are gained so 
easily.  Eventually, all children will bump into something they cannot immediately 
understand.  What will they do?  Give up?  Or plunge in, determined to master what is 
initially mystifying?  Open-ended activities also play a role in enlarging children's ideas 
about intelligence by providing the leeway to get to challenging mathematical problems 
without a lot of dead time.  Providing time to share mathematical discoveries alerts 
children to multiple ways to solve problems and to varieties of mathematical creativity.  
In this way, children can come to see that being smart involves more than speed and 
getting good grades. 

 
Thus, it is not only in overall level of instruction that children need the optimal 

match, it is also in the pace of instruction.  Giving one child time to think—sometimes 
quite a bright child who is tussling with a difficult problem or a new way of approaching 
an old understanding—does not mean that everyone has to be left to his or her own 
devices.  Because math is so interrelated and interconnected, children should have no 
problem extending or posing their own problems.  If finished with seat work early, 
children can write in their math journals about what the easiest problem was, or the 
hardest, what would make an easy problem hard or what would make a hard problem 
easy.  Children could also be asked to find a more elegant or simpler solution to their 
problem, or a simpler way of describing their solution.  Children could also be asked to 
relate their current math activity to a real-life context, to make up a story problem for the 
equation they just worked on, or to give a justification for the procedure used. 

 
Mess-Around Time Is Learning Time 

 
Another important aspect of setting the climate involves giving children plenty of 

opportunity to play and mess around with materials and manipulatives before proceeding 
to introduce new goals.  Davidson, Galton, and Fair (1975), the inventor of the Chip-
Trading Game (as well as many other math activities), and Burns (see 1987, 1988), the 
prolific math educator, both agree that children need to have plenty of unstructured time 
as they are introduced to new material. 

 
This opportunity to "mess around" gives children time to pose their own 

problems, make their own discoveries, and set their own agendas.  It can also be a 
wonderful, informal opportunity to assess and tune in to one's students.  For instance, a 
heterogeneous class of first graders is given pattern blocks for the first time that school 
year.  A number of children attempt to build three-dimensional objects; one child insists 
on sorting and stacking the same kind of blocks; two girls make animals; several children 
explore how different shapes can be combined to create hexagons; and several other 
children build complicated patterns that involve symmetry.  The fact that children 
pursued such different activities informs the teacher about the status of each child's 
development with regard to perception of shapes, congruency, patterns, and symmetry. 
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Extending Problems and Ideas 
 
The children's self-created activities also suggest other avenues to pursue with 

them.  For instance, for the children who made pattern block animals, a natural next step 
would be to invite them to write the instructions (or dictate them) for how to create those 
animals.  Writing the instructions for the pattern block animals invites the creators to 
analyze their creations in terms of the kind and number of shapes used, thus extending 
their play into a more demanding task.  After this is done, a child could give the 
instructions to a friend to see if the friend could make the animal from the instructions. 

 
Leading Questions 

 
For the children who are engaged in finding different ways to make hexagons, the 

teacher could pose one of the following:  "Find all the ways to make different hexagons."  
"Which shapes can't you use to make hexagons?"  "Can you make a big hexagon?"  "Find 
all the ways to make trapezoids, parallelograms, etc."  "Make all those shapes bigger."  
The children who made complex patterns involving symmetry might be handed a little 
mirror and asked to find the lines of symmetry and to predict where, on their pattern, they 
will find symmetry.  In this way, children at all levels and abilities are engaged in 
worthwhile academic pursuits, teachers are able to track the children, and the curriculum 
can follow the children rather than vice versa.  Most importantly, teachers have the 
opportunity to discover talent that may not emerge when math consists only of 
computations or assigned tasks.  And children feel a wonderful sense of freedom to 
explore and make their own discoveries. 

 
Another good example of providing an open-ended activity for primary school 

children is simply to bring in a big bag of real coins.  The fact that they are real coins 
enhances their value for children and imbues the proceedings with more importance.  
Each child receives a bag that includes several of each denomination.  The children are 
then left to their own devices to explore the contents.  What would a group of first 
graders do with such a bag?  Some children will begin by sorting the coins and counting 
their stacks.  Other children will want to know how much money there is all together and 
attempt to add on by ones, fives, tens, and twenty-fives.  Other children will pose 
addition problems for themselves using their total amounts and that of their neighbors.  
Other children will examine the coins, find the dates, and determine how old the coins 
are, an activity that involves some complicated subtraction.  The observing teacher can 
make note of what the children are doing and the strategies they use.  She can then pose 
coin riddles for the whole group, such as:  "I have four coins in my hand and they total 46 
cents.  What kind of coins do I have?"  The children can also make up their own coin 
riddles.  These child-created riddles provide good assessment material. 

 
Individual Differences 

 
By this time, it is clear that even talented children differ markedly in their tempo, 

style, and approach.  Respecting these individual differences, and even taking advantage 
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of them also helps in setting a climate that empowers children.  In Chapter 8 we discuss 
several children who vary in tempo, style, and approach to learning math. 

 
To Praise or Not to Praise 

 
One of the best ways to help children feel good about themselves is to take their 

thinking seriously.  For many adults, it is almost a habit to praise children whenever they 
show their work.  The result is that children habituate to this praise and dismiss it as 
meaningless or assume that everything that they do is wonderful.  Praise can also end or 
cut off a mathematical discussion instead of extending it.  If, instead of automatically 
praising, we respond thoughtfully to what a child says, the child will infer that he or she 
is doing some good mathematical thinking.  In this way, children will also respect the 
adults with whom they work and take their own work more seriously.  In addition, 
children might also develop autonomy in the realm of learning.  In the following story we 
describe how one of the teachers helped to foster autonomy for two of the Math Trek 
participants. 

 
Developing Autonomy 

 
Cathy was a remarkably strong-willed child who went to a very traditional school.  

Number facts and computations were stressed above all else.  So when Cathy came to 
Saturday Club she brought with her the skills and stresses from her school week.  Her 
best friend Michelle came to the same session, and their behavior was remarkably 
predictable.  No matter what activities were carefully arranged on the tables, they would 
march right over to the blackboard to play "Teacher."  This game involved one of them 
putting a computation on the board and instructing the other child to solve it.  After the 
problem was solved, the "teacher" would mark it right or wrong.  One day, the two 
became involved in a big dispute over one of these board problems.  The problem was 
this: 

 
 20 
 x 20 
 
Cathy said that the answer was 40.  We overheard Michelle say that didn't look 

right to her.  Cathy insisted, saying that her father had told her.  The two of them 
demanded the correct answer from the teacher.  First, we asked Michelle what she 
thought the answer was.  She said she thought it was 200, because she thought it had to 
be a lot more than 40, which looked way too small.  Although Cathy insisted that we tell 
them the answer right away, we suggested that they determine it for themselves.  We 
asked them which of the many materials around the room might help them figure it out.  
Cathy immediately ran to the base-10 blocks with Michelle in hot pursuit. 

 
The two girls were a little perplexed at first.  They weren't quite sure how to set 

up the problem.  How do you show 20 times 20 with base-10 blocks?  Their teacher sat 
with them on the floor and asked them what 20 times 20 really means.  Michelle thought 
for a minute and said, "Twenty groups of 20, so there has to be 20 of these things (the 
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tens sticks) in each group."  Cathy furrowed her brow and said, "that would be way more 
than 20; that would be 20 tens.  I think you need twenty of these little things (the ones 
cubes)."  Michelle became excited and said, "Oh, I see, but you don't need the ones, you 
can just use two of these (the tens)."  Now it was Cathy's turn to be confused; she counted 
up each little cube on the tens block.  As soon as she got to 20, she quickly began making 
piles of two tens each. 

 
It took the two girls some counting and recounting, but they finally put together 

twenty piles of 2 tens each.  When they finished, they sat back and simply surveyed all 
the blocks for a minute.  Then began the task of counting up all those piles.  Cathy's idea 
was to count by 20s.  She began, "twenty, forty, sixty . . ." and stopped.  "This is hard!"  
Michelle jumped around a bit and said, "We could just count by tens, see, ten, twenty, 
thirty, forty, . . . ."  As she counted, she touched each tens block.  But Cathy disagreed.  
"That will take too long!"  Michelle deferred to Cathy and they again began to count by 
twenties.  At this point a couple of other children chimed in to help with the count.  Their 
teacher, satisfied that the children were finding a way to the answer, went off to check on 
another group of children. 

 
About five minutes later, Cathy and Michelle ran over breathlessly to announce to 

their teacher that the answer was 400.  She asked which of their answers had been closest 
to the actual answer.  Cathy said, "In a way, mine was, 'cause if you look at it written, 40 
is closest to 400."  "How is that?"  Cathy said, "Forty just has one less 0."  Michelle then 
said, "But my answer is closest if you think about the number; two hundred is closer to 
four hundred than forty is."  And with that they were off to the blackboard to give each 
other more problems.  Only now, instead of running to us to verify answers, they ran to 
the base-10 blocks to verify, and for the next several months this was their new way of 
playing "Teacher." 

 
This episode engendered several changes for these girls.  First, it helped them to 

see that they could become their own authorities and did not have to rely solely on 
external sources such as the teacher.  Second, these girls realized that they could solve 
problems collaboratively.  Third, they developed an intense interest in base-10 blocks. 

 
Talent Is Not a Guarantee of Immediate and Complete Comprehension 

 
One lesson we quickly learned from the talented participants in Math Trek is that 

these children were not immune to misconceptions in mathematics, that at times these 
children were mystified by the written representation of arithmetic, and that even for 
these children there were some concepts that needed plenty of time and lots of play to 
come to a deep understanding.  The following anecdote, involving the same two girls 
described above, illustrates how important space and time can be in rich mathematical 
learning.  This anecdote also attempts to portray the constant need for teachers to make 
decisions as to how to respond to children. 

 
Cathy and Michelle's interest in the base-10 blocks soon expressed itself in a 

game they devised.  One session, they made a structure with the thousands cube and the 
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hundreds flats.  Then they took the tens blocks and pushed them through a platform in 
their structure.  They seemed very busy and engaged, so we chose simply to observe 
instead of changing the game into a math problem (e.g., "How much does your structure 
cost all together if hundreds are worth a $100 each and thousands are worth a $1,000 
each?").  They chatted away as they played and decided to call their game "Lumber 
Logging."  We looked at each other and simultaneously said, "No, it should be 'Number 
Logging!'" 

 
It was a curious game, and one to which they returned for a portion of each 

remaining session of Math Trek the first year.  This game did not, on the surface, seem to 
have a great deal to do with math, or at least with big ideas in math or with pushing the 
envelope of the girls' knowledge and expertise in math.  However, they were intent on 
developing and playing this game, and not to be dissuaded with other pursuits or 
challenging questions.  Once they had played the game to their satisfaction, they were 
quite relaxed and ready to do the many other activities and problems that comprised the 
sessions.  These girls were devoted to their Saturday Clubs and bemoaned the interval of 
two weeks between sessions.  Cathy was particularly enamored of one project we 
assigned to the children:  finding all the ways to express 14 for our end-of-the-year cake.  
The number 14 was chosen to commemorate the fact that we had met 14 times that year.  
Cathy fluently came up with addition, subtraction, and multiplication problems, so we 
asked if she could also find a division problem that yielded the answer of 14.  She 
informed me that she had not been taught to divide yet.  This discussion took place as 
snack was being distributed, so we quickly turned this activity into a division problem.  
There were four children at the table and the snack was goldfish.  We asked the group, 
"Well, if there are 32 goldfish here, how many goldfish will each of you get?"  Cathy 
commanded the bowl of goldfish and began to divide them up among the four children.  
She quickly figured out that the answer was eight.  When asked how she had figured it 
out, she replied, "Simple.  It was like dealing cards; you just count up how many you 
have at the end."  We informed her that what she had just done was division!  She was 
very impressed with herself and turned her attention to figuring out a division problem 
where 14 was the answer.  By the end of snack, and with some collaboration from the 
other children at the table, Cathy came up with 28 divided by two. 

 
We ended the first year of Saturday Clubs in April of 1994 and resumed the 

Saturday Clubs in September of that year.  Cathy and Michelle came bounding in to the 
room that first Saturday delighted to see each other and their teacher.  However, most of 
all, they were delighted to see the base-10 blocks ready and waiting for them.  They 
turned to each other and said, "I know, let's do Number Logging!"  This time, we 
observed that they had added a few rules so we suggested that they could write down the 
rules so that other children could play their game, too.  This suggestion seemed to please 
them, for they immediately jumped up and got some graph paper and began to discuss the 
rules.  We turned our collective attention to other matters that session, but the two of 
them left saying that they would finish their instructions during their sleepover that night. 

 
The two girls assured us the next time that they had worked on their book of rules, 

but had forgotten to bring it in.  They continued to play Number Logging all through this 
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second year, too, sometimes bringing in other children into their play.  Of course, they 
also pursued many other topics, too, as discussed in other sections of this book. 

 
When the last session of the second year rolled around, the two girls came into the 

classroom looking a little sad and a little nostalgic.  But they were also excited for they 
had remembered to bring their Number Logging Rule Book.  They proudly announced 
that the book was a present for us and pointed out that they had dedicated the book to us.  
We read the book with them and complimented them on how clearly they had described 
the rules they had made up. 

 
As if they were already reliving the good old times, they then rushed over to the 

rug where the base-10 blocks were and began their play.  They called us over after they 
had played a satisfying game to show us how they were arranging the tens.  Michelle had 
arranged her tens to show the word "TENS!" (she used a cube for the point of the 
exclamation mark).  And Cathy demonstrated all the complements of ten (10-0, 9-1, 8-2, . 
. ., 0-10) by starting with ten in one group and none in the other group and moving one at 
a time to the second group. 

 
As Cathy demonstrated this progression lovingly, she verbalized that you end up 

with the same amount you started with, just on the other side, and that along the way, the 
same groupings are created (e.g., 1 and 9, 9 and 1).  Cathy's demonstration let us know at 
least one of the meanings this oft-repeated game had for her:  It was a working out of all 
the additive components of ten as well as a way of deepening her knowledge of tens as a 
unit and as a multiunit (i.e., a unit composed of other units).  Of course, she probably 
"knew" some of those meanings before she even began Math Trek.  How obvious it 
seems that ten is composed of ten ones, yet this is not necessarily obvious to children.  
Math Trek allowed Cathy to play with and consolidate those meanings until they were 
coherent in her mind. 

 
When their play was finished, the two girls carefully arranged the base-10 blocks 

in their box and again called us over to see how neatly they had done their work.  
Michelle proudly said, "That's our best put-away job ever." 

 
Thus, setting the climate also involves constant readjustments of the thermostat 

and this is accomplished through our actions, responses, and reflections as teachers.  In 
the next chapter, we tell more stories of what we learned from the Saturday Clubs, 
including the major themes that girded our curriculum. 
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Number Logging Rule Book 
Hold your logs up and put them through 
the holes in the tower. 
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CHAPTER 6:  Curriculum—Big Ideas and Many Extensions 
 
 
This chapter describes much of what we learned from the Math Trek Saturday 

Clubs that could be useful in other settings.  The stories that follow describe in detail 
many of the Big Ideas we pursued in Math Trek and how the teachers and children 
engaged with these ideas and with each other.  What follows, then, are Math Trek stories.  
This chapter is not designed to be a set of curriculum recipes; it's designed to impart a 
strong sense of what we learned from conducting the Saturday Clubs and from the 
participants, and to reveal the nature and purpose of open-ended activities and their 
usefulness in working with math-talented children.  It should also be noted that many of 
the mathematical themes were pursued over many sessions; they were not one-shot deals 
or encapsulated activities.  We hope that this chapter will spark teachers' own 
pedagogical and mathematical creativity and impart a sense of how to find and pursue the 
big ideas in math with their own classes.  Of course, there may be specific activities in 
this chapter that teachers will want to use in their own classrooms.  To make them as 
accessible as possible, we have provided sequential descriptions of these activities, as 
well as questions and extensions in Appendix B.  It might be very helpful to try out the 
activity and to play with the mathematical ideas involved before reading the chapter.  As 
always, teachers' own continual learning engenders empathy and understanding of the 
learning process; it may also generate thought-provoking questions to ask of students. 

 
What Is a Numeral? 

 
To begin an open-ended activity, project or topic, start with a question that invites 

children to bring their own considerable knowledge to bear on the issue and to become 
reflective about the workings of some aspect of their world or the world of mathematics.  
For instance, a good topic for children in the primary grades is the issue of numerals, or 
written numbers.  Numerals, along with letters, quickly become part of the taken-for-
granted symbolic world in which the child lives.  Indeed, for many children, letters and 
numerals are considered pretty much the same—special marks on the page.  Because 
written representation is so important in mathematics, it can be very useful to explore the 
nature of these written symbols with children.  In doing so, their theories and 
misconceptions will become evident and easier to work with. 

 
The first year of Math Trek we explored numerals in many ways.  One day, the 

children were asked:  "What is a numeral?"  Here are some of their responses:  "A letter."  
"A number that you write down."  "Something to add or subtract."  "The numbers from 1 
to 9."  "Zero is a numeral, too."  Also explored were their ideas about what numerals are 
used for, why they look the way they do, etc.  The children were quite animated as they 
discussed all the ways numerals are used in our daily lives.  They also played with the 
ways in which numerals symbolize the number that they represent by creating numeral 
characters.  For instance, Mr. Three had three heads, three arms, three legs, etc.  Showgirl 
2 made the most of her curvy lines.  And 3-bird's design included lots of sideways 3's (a 
universal stylization of birds). 
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The following year, a slightly different question was asked when the topic was 
revisited:  "Why do we have numerals?"  In this discussion, children were vociferous in 
their notions that without them it would be too hard to keep track of things.  The teacher 
suggested just using tally marks.  One child was disdainful of that idea:  "That would get 
real annoying, real fast."  How come?  "Because then you'd have to count all those marks 
just like the things the marks are for."  The idea of using slashes for bundles of fives was 
quickly suggested and found to be far superior to mere tallies.  Such discussion helps all 
children to see the utility of grouping—an important idea in coming to understand our 
place-value system (Jones & Thornton, 1993). 

 
What Is a Number System? 

 
We also asked why some kind of numeral system might have been invented by 

human beings.  This question directs the children's attention to the fact that mathematical 
symbols are human inventions as well as to the idea that mathematics has a history.  
Seeing mathematics as invention and as history subtly cues children that they, too, are 
capable of inventing.  After this discussion, other numeral systems (Egyptian, 
Babylonian, Roman) were introduced.  For example, Egyptian numerals were presented 
with some geographical and historical context, and in a way that allowed children to 
ferret out the structure of the system. 

 
When presented with the Egyptian numerals, the children very quickly wanted to 

know if there was a zero and were aghast when informed that, "No, no one had invented 
zero yet."  We then talked about the uses of zero.  The children were asked to interpret 
various numbers symbolized by Egyptian numerals and to compare how many symbols 
are used in the Egyptian system versus the Hindu-Arabic system.  They wrote their ages 
and their parents' ages, but were overwhelmed when they attempted to write their 
telephone numbers.  The children were then asked to choose a partner and to give each 
other addition and subtraction problems using the numerals. 

 
One of the perplexing aspects of the Egyptian numeral system for young children 

is that while it encodes powers of ten, it does not have place value or make use of the 
positional property.  This contrast with our Hindu-Arabic system forced the children to 
reflect on the usefulness of place value as they played with the idea that one can arrange 
Egyptian numerals any way one likes.  One teacher wrote 43 in Egyptian numerals like 
this: 

 
lllnnnn 

 
and waited for the children to respond.  They were aghast that the staffs (ones) were 
placed before the tens and vocalized this by exclaiming, "You can't do that!"  The teacher 
asked, "Why not?"  Some of the children seemed quite puzzled and others just shrugged, 
but no one had an answer or took advantage of freedom from place value on our first 
exploration of Egyptian numerals,  The next week, however, a child put his estimate up 
on a number line using the following Egyptian numerals:  arch staff, arch staff, coiled 
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rope.  When asked why he arranged the symbols in that manner he replied, "Because it 
doesn't matter how you do it in Egyptian—it will always be the same number." 

 
As a wrap-up, children were asked to compare our system with the Egyptian 

system.  The children divided themselves into two camps.  There were many children 
who said they appreciated the Egyptian numerals because they were "pretty" and "arty," 
not like our numerals.  There were also many children who said that it takes too long to 
write them out; they pointed out that addition and subtraction problems require a lot of 
counting.  We summarized by saying that the group seemed to feel that Egyptian 
numerals were more aesthetic but more cumbersome. 

 
There are many activities one can do with other numeral systems:  play "war" 

with cards that have numbers written in the numeral system; do estimates on a number 
line using a different numeral system; do all four operations using them; and compare 
Roman, Egyptian, Babylonian, Mayan, and Hindu-Arabic systems.  Perhaps the unit 
could end with children inventing their own numeration system. 

Coming to learn another numeration system helps children to reflect on their own 
and to understand it more structurally.  In a small way, this is not so different from the 
effect learning a foreign language has on our understanding of our native language. 

 
 

 
 
 

Equivalence 
 
A crucial idea that underlies much of mathematics is equivalence.  Equivalence 

involves the understanding that there are alternative but equal ways of expressing values 
and quantities in mathematics.  The most recognizable form of equivalence may well be 
in place value, where we acknowledge that ten ones is equal to one ten, ten tens are equal 
to one hundred, and so on.  Equivalence, however, permeates all of written arithmetic, 
including the place value system, equations in algebra, and congruency in geometry.  
Indeed, can anyone think of anything in mathematics that does not involve some form of 
equivalence?  It is partially by virtue of equivalence, which affords multiple and flexible 
ways of expressing mathematical ideas and quantities, that mathematics is as rich and 
interconnected as it is. 
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Chip-Trading 
 
One of the ways in which we explored the idea of equivalence in Math Trek was 

through the game of chip-trading (Davidson, Galton, & Fair, 1975).  This versatile game 
is accessible to all children in a class as it can be played at different levels.  This latitude 
to play at different levels and in different ways ensures that all children get something 
useful out of their play.  Indeed, students will gladly think up some of those ways.  Thus, 
this game is also a great example of what we mean by an open-ended activity.  The way 
the game works is this:  First, make a playing board by dividing a piece of paper into four 
columns.  Mark the top of the right-hand column yellow, mark the top of the next column 
blue, the next one green, and the left-hand column red.  Then, choose a base starting with 
a small number such as three (called "Land of Threes").  There are four different color 
chips (yellow, blue, green, and red) and these represent the first four powers (0, 1, 2, 3) in 
whatever base is used.  Each player takes a turn rolling the dice (or a die in the case of 
small "lands" such as 3 or 4); the number appearing on the dice tells how many yellows 
the player is to take.  The object of the game is to acquire a red chip.  In the Land of 
Threes, whenever three or more of any color are accumulated, they must be traded in for 
the next color, as that next color represents the next place value.  For instance, let's say 
the number 4 was rolled.  The player would take four yellows and would then need to 
trade three of those yellows in for a blue, so that the player would have one yellow and 
one blue on their color-coded playing board.  The play continues until someone is able to 
trade for a red. 

 
Another feature of the game is the use of a "banker" who hands out the chips as 

requested.  The banker's responsibility is not only to hand out the chips, but also to ask 
for the player's reasoning.  For instance, if a child requests a blue and two yellows when 
she has rolled a five, the banker asks, "How come?"  The player then has to articulate her 
reasoning, e.g., by explaining, "Well, a blue is worth three yellows, and three and two are 
five."  Requesting that children articulate their reasoning accomplishes three goals:  a) 
children clarify and process on a deeper level; b) children expose their peers to more 
advanced strategies and their rationales; c) teachers can further assess the children's 
strategies and their understanding of those strategies. 

 
There are also excellent, thought-provoking questions that can be asked as the 

children are playing, or when one wants to stop the play temporarily to assess who is 
ahead, by how much, and why.  For instance, one can ask:  "I wonder how many yellow 
chips are equal to one green chip?"  Children are interested in such questions and 
willingly disengage from their play to puzzle out the answer with each other.  Their 
answers provide a window onto their thinking about equivalence, groups, and the number 
of units within a group; concepts that are used in all computations.  Some children 
explain that a green is worth four yellows because a blue is worth three, so a green has to 
be worth more.  Other children will say six, and at least one child will figure out that a 
green is worth nine yellows because it takes three yellows to make a blue, and three blues 
to make a green, and three threes are nine.  One can then go on to ask what a red is worth.  
Questions can also be posed about how the value of the green chip relates to the value of 
the blue chip. 
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The game can also be played in reverse:  All players start with a red with the goal 
of getting to zero.  Going in reverse requires mental flexibility and visualization skills 
that are very important in higher mathematics.  Going in reverse is akin to subtraction, an 
operation that also seems more difficult for children for similar reasons. 

 
Listening to children's conversation as they play leads to more ideas.  For 

instance, one child giggled, "I know, let's play this game in the Land of Ones!"  The 
teacher responded by saying, "Gee Jeff, you seem to think that would be a very funny 
idea.  How come?"  Jeff answered, "If I went first, I'd win on the first throw!"  He went 
on to explain, "Even if you rolled a one, you'd trade that one in for a blue and 
immediately have to trade that one in for a green and that one in for a red and then you'd 
win!" 

 
As mentioned in the last chapter, chip-trading is also a good place to work on 

setting the climate for mathematical exploration.  Some children, no matter how bright, 
like to see all their chips before they trade, or like to take their time to think things out.  
Other children inevitably want to do it for the seemingly slower child.  The teacher's role 
here is to help children respect one another.  One such impatient child pounced on the 
more contemplative child and said, "Here, let me do it for you.  See, you just take a blue 
and two yellows!  I'll get them for you."  This of course made the child whose turn it was 
hopping mad.  We intervened by saying, "You know, Richard, Marina has her own way 
of getting the answer.  That's the neat thing about this game; there are lots of ways to get 
to the answer.  I bet you two could learn from each other.  Let's watch and see how 
Marina does it.  Then she'll watch and see how you do it."  In this way, children learn to 
listen to and respect each other.  They also learn that quickness is not the goal in 
mathematics.  This is also the sort of game that, once children know the few simple rules, 
they can play by themselves.  This frees the teacher to work with another group of 
children. 

 
After children have played the game in different lands, you can start asking them 

to compare how it is to play in the different lands—which land is easiest to play in and 
why, which land is the hardest to play in and why, etc.  Getting them to compare different 
bases invites them to reflect on multiples and factors. 

 
Here's what two children invented after their experience of playing the game 

periodically over many months:  Rachel and Tanya decided to count all the chips of each 
color and figure out how many points that they amounted to all together in the Land of 
Threes.  They were quite systematic and purposeful in doing so.  They got a piece of 
paper, cut it into four sections, and labeled each piece with the color of the chip, and how 
many yellows the green was worth.  Then they counted up the chips of each color and did 
the computation to figure out how much they added up to.  For example, they found that 
there were 35 green chips.  They then multiplied 35 by 9, for each green is worth 9 
yellows in the Land of Threes.  They did this for all the different colored chips and were 
absolutely delighted with their investigation and excited about sharing their results.  We 
wondered what the results would be in the different lands.  They quickly got busy 
calculating how many yellows each chip was worth in the different lands.  We thought 
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the children might be able to appreciate the relationships among the color values if they 
were presented in a systematic manner.  So we asked the girls if they might make a table 
of the results and then look for some patterns.  Systematically recording the results 
engendered an excited flurry of thinking and pattern-finding.  Rachel noticed that the 
blues were always the number of the land.  Tanya noticed that you "times" the land you're 
in by one and you get the value of the blue chip.  Rachel observed that you get the value 
of the red chip by multiplying the value of the blue chip by the value of the green chip 
(e.g., 3 x 9 = 27).  Then Tanya excitedly chimed in that you "times" the value of the blue 
chip by itself or by the land you're in (same number) and you get the value of the green 
chip.  We then asked them if they noticed anything about the value of all the greens.  
They both exclaimed, "Yes!  They're the square numbers!"  We replied, "Hmmm, 
perhaps if there is a pattern in the value of the greens, there's a pattern in the reds, too."  
They seemed stuck at that point so we suggested that we build the value of the chips in 
the Land of Threes in order to try and see the pattern.  Together we used the colored tiles 
and put down one tile, then three tiles in a row, and then a square of nine tiles.  We then 
asked what the 27 might look like.  They did not have any idea, so we suggested we start 
off with a square of nine.  We then asked them to visualize what 27 would look like.  
Rachel said, "Well, maybe we could have three squares on top of each other because 
three nines are 27."  "Oh!" said Tanya, "It will make a cube!"  We then began to wonder 
if that would hold true for the reds in the other lands.  The girls danced around 
exclaiming that the red chip is always a cube.  When it was group time they presented 
their investigation to the whole class, asking their classmates to find some of the patterns 
that they found. 

 
Thus, a simple game led to some very complex mathematics.  The route to this 

mathematics was through play and exploration and the problem-posing that inevitably 
attend the freedom to play and explore. 

 
Visualizing Numbers:  Patterns, Functions, Squares, Rectangles, Golden Rectangles, 

and the Fibonacci Sequence 
 
Encouraging children to see the connections between equations or numerical 

relationships and the images or shapes that those equations describe or engender was an 
ongoing theme at Math Trek. 

 
The Saturday Club children willingly used manipulatives to represent their 

thinking and as tools for solving problems.  They liked graph paper and were intrigued 
with the idea of writing number sentences or equations to describe their work with the 
manipulatives.  They also enjoyed going in the other direction, starting with an equation 
and drawing or representing its meaning with manipulatives.  In this way, the children 
came to see that the two enterprises were connected and both a valid part of mathematics. 
Visualizing and equation-writing also became two tools in their ever-expanding tool kit. 

 
The children's great pleasure in visualizing numbers convinced us to explore the 

issue more formally in the second year.  We started with an adaptation of Kaye's (1987) 
"Lots of Boxes" game (from Games for Math, p. 123).  This game, while simple enough 
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for first graders, opens out into some complex mathematics.  It's all in where the children, 
and their accompanying guides, want to take it. 

 
Lots of Boxes 

 
In this game, children are given a piece of graph paper, a pencil, and one die.  The 

first roll tells the player how many boxes across to draw.  The second roll tells the player 
how many boxes down to go (starting from the end of the first line drawn).  With those 
two pieces of information, the player is able to finish the box by filling in the other two 
sides to match the lengths already drawn.  Of course, some children will insist on 
throwing the die more than twice.  That's okay; they will quickly notice that unless they 
roll the same two numbers again, they don't get a box.  This can lead to a fruitful 
discussion of why it only takes two rolls to determine all four sides.  After the player has 
completed the box, she is asked to figure out how many squares are inside her box.  Then 
she is asked to write a number sentence that shows how she figured that out.  For 
instance, if she rolled a two and then a four, there will be eight squares inside her box.  If 
she counted them up two at a time, she might write:  "2 + 2 + 2 + 2 = 8."  Another child 
might see the relationship of the two lines as having to do with multiplication, therefore 
writing the equation as:  "2 x 4 = 8."  Again, this helps the teacher by providing 
assessment information, and helps the child by relating numbers to an image. 

 
 

 
 
 
Playing this game leads to an interesting phenomenon.  Eventually, a player will 

roll the same number twice, and notice that the shape that emerges is a square.  At this 
point, teachers can ask, "How come sometimes you get squares?"  This question focuses 
the player's attention on how numbers yield shapes.  As Lily said, "Oh, I get it, if you roll 
the same number twice, you always get a square!"  We followed up by asking how come 
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rolling the same number yields a square.  Her reply was, "That's because a square has to 
have the same size sides, and if I roll the same number, that makes it so all the sides are 
the same." 

 
Then one might ask, "So, are squares rectangles?" thus starting the children off on 

an exploration of how squares and rectangles relate.  This exploration can veer off into 
two other directions.  One is to have the children further explore squares and rectangles 
by playing the "Martian Game." 

 
In the Martian game, the teacher explains that she is a Martian who has never met 

a square before and would like to know more about one.  However, as a Martian, she 
cannot see; she can only take the information in through language, therefore the children 
can't show her squares with pattern blocks or by drawing.  The children have to give 
drawing directions that the teacher must follow literally.  The results are often hilarious; 
children have a hard time articulating their sense of shape precisely and with defining 
features.  This is a good exercise to get them to articulate their mathematical 
understanding of shape both to others and to themselves.  Finally, as a group process, 
children will eventually succeed in getting the "Martian" to draw the shape accurately.  A 
cheer usually goes up when the Martian finally gets it right.  A debriefing discussion can 
then be had about the importance of being precise. 

 
The "Box" game can also be taken in another direction by having children take 

note of how many little squares are inside the big square; this can be a good first 
introduction to square numbers or a new way of seeing square numbers if children have 
been introduced to them rather rotely.  Indeed, one third-grade class playing this game as 
an introduction to multiplication became quite fascinated with the square numbers and 
wanted to keep on going by making a list of them.  Their teacher wondered aloud if they 
could find a pattern in the amount by which square numbers go up each time.  The 
children quickly invented the rule that the next square number can be found by adding the 
next consecutive odd number to the last square (e.g., 0 + 1 = 1, 1 + 3 = 4, 4 + 5 = 9, 9 + 7 
= 16, . . .).  Their enthusiasm indicated that finding the numerical pattern was a piece of 
mathematical power for them. 

 
Other Square Activities 

 
Squares can also be further explored through the use of an adaptation of a great 

problem from Schifter and Fosnot (1993).  Farmer Jane has a problem:  she loves squares 
and so has put her modest little apple orchard into the shape of a square.  It has done quite 
well and for next season she wants the next bigger size square.  She'll have to add 13 
apple trees to get to the next bigger square.  How many apple trees are in the current 
square? 

 
This is another great problem to solve in a group and with some manipulative 

such as colored tiles or with graph paper.  The teacher can then watch to see whether 
children generalize their knowledge and experience with squares, or start from scratch.  
Here's what Rachel and Joni did.  They started by building a square of four tiles, and then 
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adding on the necessary tiles to build the next larger square.  Joni thought it would be a 
good idea to color coordinate the colored tiles so that it would be easy to see how much 
they added on each time.  This made a pleasing effect—each time the square was made 
larger, an L-shaped group of like-colored tiles was added.  Rachel counted the "L's" and, 
when the square had 49 tiles, announced that since 13 had been just been added, Farmer 
Jane's original square orchard consisted of 36 trees.  When asked if they could find a 
pattern in what they were doing and they quickly separated the L's, noting that, "It's like 
counting by the odd numbers!" 

 
Another follow-up would be to use the Open Court story from Bargains Galore 

that has Mr. Breezy telling a hardware store clerk that he needs eight squares of glass in 
order to resurface a square window.  The children are then asked whether eight squares 
could be arranged to form a square.  Interestingly, the Saturday Clubbers had to work this 
out by drawing or arranging the tiles in order to see that eight squares cannot be arranged 
as a square; eight to them was a pleasing number that "seemed right."  Approaching the 
same concept from different angles allows teachers to assess how well children have 
internalized and generalized the concept, and allows children to understand the concept in 
both more intensive and extensive applications. 

 
Some children of course seem to come into knowing "all about" square numbers.  

Beware.  Just as with the Mr. Breezy and the square window problem, there's knowing 
and then there's knowing.  A group of children were observing another child making 
successively larger squares with the pattern blocks.  The children decided the largest 
square was the Daddy square, the second largest the Mommy square, and the little 
squares were the baby squares.  Anna, who had been watching intently but silently, 
exclaimed, "I just counted the number in each square:  Those are the square numbers!  I 
never knew square numbers were square." 

 
Fibonacci Series 

 
Visualizing numbers (and squares!) also plays a role in any exploration of the 

Golden Rectangle and the Fibonacci sequence that describes its properties.  This 
exploration follows well from the other activities described above, and can be conducted 
in small groups or as a whole class activity.  This sequence was discovered by a 
mathematician named Fibonacci in the 12th century and came about through his 
observations of how rabbits multiply.  This is the sequence:  1, 1, 2, 3, 5, 8, 13, 21, 34, 
55, . . . .  Notice that the sequence continues by adding the last two numbers.  The golden 
rectangle is any rectangle whose length and width utilize adjacent Fibonacci numbers 
(e.g., 8 x 13).  To learn more about both the sequence and the rectangle, and their roles in 
art, architecture, and botany, consult any of the following:  Doczi (1984); Garland (1987); 
and J. Gies and F. Gies (1969). 

 
The sequence for this exploration was designed to give children the opportunity to 

figure out the logic of the Fibonacci sequence and to discern the surprising aesthetic 
qualities of golden rectangles themselves.  Large graph paper for the teacher to use is 
helpful here, as are individual pieces of graph paper for every child, preferably paper with 
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squares of at least 1 cm.  Have on the large graph paper a golden rectangle with the 
dimensions 21 x 34 or 13 x 21.  Ask the children to make their own rectangle with the 
same dimensions as the one you have.  Just making the rectangle involves counting 
accuracy and may be hard for some children.  If this is the case, children could work in 
pairs, with one child doing the checking and the other child doing the drawing. 

 
The struggle to count off the squares necessary to make the rectangle involves 

developing the crucial notion that measurement starts from zero.  If we look closely at 
children's measurement mistakes we find that one typical error is to begin the 
measurement from one.  Beginning with one makes intuitive sense, especially from the 
perspective of a young child accustomed to counting sequences.  Recognizing this 
logical, developmental error can lead to an interesting discussion.  Simply being asked to 
verbalize their intuitions will often help children to become more aware of the issues 
involved.  On a more social plane, it could be a wonderful piece of learning for children 
to realize that sometimes it is the task, not the teacher, that requires accuracy. 

 
After children have constructed their rectangle (and checked it for accuracy), ask 

them to figure out the largest square that could be made within the rectangle.  Some 
children will interpret the question as how to make the largest square without touching 
any of the sides of the rectangle.  This is easily clarified by explaining that three sides (or 
portions of those sides) of the rectangle will also form three sides of the square.  After 
children offer their responses, ask them how they knew that.  This question helps children 
to clarify their thinking about how squares are constructed.  Then ask them to find the 
largest square in the rectangle that's left over, showing them how to move counter-
clockwise.  Continue to do this with them until there are no squares left.  The rectangle 
should now look like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ask the children how the squares could be described or named.  A 13 x 21 

rectangle first yields a 13 x 13 square.  Some children will say it should be called a "13 x 
13," and another child might say that it should be called a "169" since that's how many 
little squares are inside a 13 x 13 square.  The teacher can explain that since it uses the 
number 13 twice, we could just call it a size 13 square.  It helps to write down on the 
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board or overhead all the numbers of the squares and to go in order from smallest to 
largest.  In that case, the size of the squares are:  1, 1, 2, 3, 5, 8, 13.  At this point, it can 
be pointed out that there's a pattern in those numbers and the teacher can wonder aloud, 
"What would the next number be?"  And since children love patterns, they will be quite 
engaged at figuring this out.  They can list their possibilities on the board and be asked to 
explain their reasoning. 

 
When this was done in the various Saturday Clubs, many of the children noticed 

that the last two numbers in the sequence always add up to the next number in the 
sequence.  At that point, we informed the children that this was a very special sequence 
called the Fibonacci numbers.  We then explained a little about the man who had 
discovered this sequence in nature—eight centuries ago!  Having some books or posters 
on this sequence in the room will entice the curious kids in the classroom (see Appendix 
C). 

 
Once having discovered this sequence, many children will want to take it as far as 

they can go.  At Saturday Club, several children figured out all that they could in their 
heads and then went to find calculators.  They spent the next 15 minutes finding larger 
and larger numbers in the sequence.  Two children returned to the next meeting with a 
page full of Fibonacci numbers that they had worked on at home. 

 
The fun, however, has just begun.  After kids have played around with the 

sequence and generated several more numbers, they are ready to go back to the rectangle 
to do another activity.  If each square is diagonally bisected, starting with the biggest 
square, a spiral emerges.  This spiral elicited appreciative "ahahs" when executed in 
Saturday Club.  It is, indeed, awe-inspiring to see a spiral emerge from a rectangle and 
the squares within it. 
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We found that at this point the children we worked with began to pose their own 

problems and to play with it in their own ways.  One child thought that she could draw 
her own spiral that would be more rounded; free-hand, she drew a lovely spiral on her 
own rectangle and then began coloring it in a way that honored the sequence.  Another 
girl also decided to color in her square spiral in an aesthetically pleasing way.  Other 
children wanted to make their own rectangles over and over again.  These children 
quickly found out that if you don't cut the squares in order from largest to smallest 
starting from the left, that the spiral pattern doesn't work.  Other children wanted to know 
if any old rectangle (not with Fibonacci number dimensions) could create a spiral.  Their 
investigations yielded a resounding "No!"  For the few children who did not have their 
own agenda, we posed the following:  "What would the next larger rectangle look like?  
What would the dimensions be, and what would be the size of the squares?"  More 
investigation ensued; the graph paper and pencils went flying.  Pretty soon, the children 
established for themselves that you better use the Fibonacci sequence, and you better take 
the next number in it (e.g., a 21 x 34 rectangle) and that the squares will repeat except 
now there will also be a 21 x 21 square.  Some children also chose to make smaller 
rectangles.  Andrew wanted to know if you could have a 1 x 2 rectangle and still have it 
work.  He explored that, too. 

 
In this series of activities children were able to see how a shape, in this case, a 

rectangle, is composed of successively smaller components.  They were also able to see, 
and play around with, the idea that by bisecting each square on the diagonal, a spiral is 
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formed and that spirals of this kind appear in nature as well.  This is also a great place to 
introduce and broaden children's appreciation of mathematical relationships in everyday 
objects (e.g., pine cones, seashells, sunflowers) and in anatomy, perception, and music.  
They could also note how important sequence is:  cut your squares a different way and 
the spiral does not emerge.  And, they were introduced to a powerful mathematical idea:  
That a visual pattern can be described by a numerical pattern. 

 
From Number Patterns to Graphing Patterns Via the Ancient Vedic Square 

 
Clearly, playing with squares and number patterns is an ancient pastime:  The 

Vedic Square, based on a transformation of the multiplication tables up through nine, is 
3,000 years old.  In fact, when introducing this activity to your children, mention how old 
the square is and ask them to calculate what date it was 3,000 years ago.  When we posed 
this question at Saturday Club, an interesting debate occurred as to whether or not there 
could be negative years.  We found that interjecting a problem to solve as we're busy 
setting up an activity helps to focus the children.  If it's an interesting problem for the 
children, they will continue to think about it for a while. 

 
With the children, we constructed the multiplication table from one through nine, 

leaving a space between each line of the table.  Alternatively, you could simply present 
this table to the children on an overhead.  However, that would deny children valuable 
multiplication fact practice.  By embedding fact practice within an activity, all children 
are more willing to work hard to secure the answers than when the answers are the goal 
in itself.  And, for first, second, and early third graders, these "facts" are genuine 
problems to be solved.  Toward the latter half of the table, some children might get 
bogged down in their calculations; calculators come in handy at this point. 

 
Once the table is constructed, we announced that the ancient Indians did not want 

two-digit numbers in their table; they would only allow one-digit numbers.  We then 
posed the problem:  How could we convert the two-digit numbers into one-digit 
numbers?  The children offered several solutions:  "Just drop one of the numbers!"  "Pick 
a number in between."  "Wait, that can't work if you have a number like 10.  Then you'd 
have a fraction."  "I know—add the two numbers together."  At that point, we said that 
the last suggestion was exactly what the ancient Indians came up with.  We then 
proceeded to put all the one-digit numbers underneath the original line in the table.  
When we got to a two-digit number, we added the individual digits together and went on.  
Here's what the table looks like as it is constructed from the multiplication table: 
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 1 2 3 4 5 6 7 8 9 
 1 2 3 4 5 6 7 8 9 
 2 4 6 8 10 12 14  16 18 
 2 4 6 8 1 3 5 7 9 
 3 6 9 12 15 18 21 24 27 
 3 6 9 3 6 9 3 6 9 
 4 8 12 16 20 24 28 32 36 
 4 8 3 7 2 6 1 5 9 
 5 10 15 20 25 30 35 40 45 
 5 1 6 2 7 3 8 4 9 
 6 12 18 24 30 36 42 48 54 
 6 3 9 6 3 9 6 3 9 
 7 14 21 28 35 42 49 56 63 
 7 5 3 1 8 6 4 2 9 
 8 16 24 32 40 48 56 64 72 
 8 7 6 5 4 3 2 1 9 
 9 18 27 36 45 54 63 72 81 
 9 9 9 9 9 9 9 9 9 
 
When we arrived at 28 (4 x 7), the children immediately noticed that when you 

add the two digits, you still have a two-digit number.  We asked them what they thought 
we should do about that.  Two children quickly chimed in:  "Add those two numbers 
together, too!"  Indeed, that was the solution the ancient Indians used.  Thus, 28 becomes 
2 + 8 which adds to 10; 1 + 0 equals 1. 

 
Here is the actual Vedic Square, without the original multiplication that it 

transforms: 
 
 1 2 3 4 5 6 7 8 9 
 2 4 6 8 1 3 5 7 9 
 3 6 9 3 6 9 3 6 9 
 4 8 3 7 2 6 1 5 9 
 5 1 6 2 7 3 8 4 9 
 6 3 9 6 3 9 6 3 9 
 7 5 3 1 8 6 4 2 9 
 8 7 6 5 4 3 2 1 9 
 9 9 9 9 9 9 9 9 9 
 
After the table was completed, Cindy announced that the table was not really a 

square.  We asked why, and she replied that it didn't look like a square.  At this point, we 
erased the original lines of the multiplication table.  It would have been helpful to have 
had an overhead of just the Vedic Square in square shape (as above), but we worked with 
what we did have.  We then posed the idea that perhaps if it didn't look like a square, that 
could be due to the way in which it was drawn, and asked, "Why do you think the ancient 
Vedic people considered it a square?"  The children needed to think for a while.  Jon said 
it absolutely was not a square; it did not have a square shape.  Sean said, "But it has to be; 
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it's a nine by nine.  If you count down and then across, it's the same number."  Tanya said 
there sure were a lot of nines in this square.  Lainie exclaimed, "Why didn't they just call 
it the magic nine table?"  We interjected at this point to say, "Let's explore this table to 
see what other patterns we might see." 

 
Thus began a veritable explosion of ideas.  Patterns were found on the horizontal, 

vertical, and diagonal planes and squares within squares were detected.  Much excitement 
was generated by this search for patterns, and the children delighted in coming up to the 
blackboard and pointing their pattern out to the group.  There was some repetition in the 
patterns that were discerned.  We handled this by saying, "Oh, you saw the same thing 
that Paul did."  We also commented, "Isn't it interesting how a pattern can be pointed out, 
but we sometimes need to discover it for ourselves?"  In this way, children did not feel 
awkward for not listening, or perhaps simply not seeing what others pointed out. 

 
After about 15 minutes of pattern-finding, the children were quite giddy with all 

the possibilities.  We began to concentrate on the patterns that were reciprocals of each 
other (i.e., the complements of nine such as 1 and 8, 2 and 7, 3 and 6, 4 and 5).  The 
children began to get restless at this point; a good indication that we were pushing a bit 
too hard here.  We backed off, making a mental note to come back to this, and then posed 
the following question:  "Where are the patterns?  Are they in the square, or in our 
heads?"  This question rather shocked and intrigued the children; it seems that no one had 
ever asked them to think about such a question.  After a pause for reflection, several 
children raised their hand.  Sean said the patterns were definitely in the square because 
that's where you find them.  Amber said that she thought they must be in our heads 
because we had to use our brains to come up with the patterns and to "see" them.  Paul, 
who seemed delighted with the question, announced:  "I think it's a combination.  I think 
it's both in our heads and in the square.  And when our brains see the numbers up there 
like that, they think it's a pattern.  So it's both.  In our heads and in the square." 

 
And so our first session with the Vedic Square ended with an epistemological 

discussion about where knowledge exists.  With such heady stuff in mind, the children 
ran to the gym for recess. 

 
Graphing Vedic Square Patterns 

 
The next time the children came to Saturday Club we had the Vedic Square up on 

the blackboard again.  The children enjoyed spotting new patterns and reviewing the 
patterns they had found before.  We asked them to particularly notice the reverse patterns 
they had spotted before.  Looking across the rows or down the columns one finds that one 
and eight, two and seven, three and six, four and five are all connected by this idea of a 
reverse pattern.  Once these pairs were established, we asked them what they might 
notice about the four pairs of numbers.  It took awhile, but finally Sean exclaimed, "They 
all add up to nine!" 

 
We then asked, "What is it about this table?  There seems to be so much that has 

to do with nine!"  The children agreed and decided it should be called "The Magic Nine 
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Table."  Paul wanted to know if the ancient Vedic people used this table for anything.  
Tanya wanted to know what is it about nines that leads to so many patterns.  Lainie 
chimed in with her trick for multiplying with nines, and there was a general discussion 
about nines. 

 
The next step was an invitation to graph their favorite row from the Vedic Square 

(e.g., if you choose the first row, you will be graphing all the numbers in that row:  1, 2, 
3, 4, 5, 6, 7, 8, 9).  We explained that they could take a sheet of graph paper and pick a 
place to start, preferably in the middle of the sheet.  The first direction was to take the 
first number in their row and draw a line as long as the number of boxes that corresponds 
to that number.  The second direction was to take the second number in the pattern and to 
continue drawing a line, this time going down on the graph paper.  For the third number, 
the child was instructed to continue to the right, and so on, always turning to the right for 
the next number until the pattern is completed by a return to the point at which the 
graphing started. 

 
The children assiduously worked on this task for about 20 minutes, every now and 

then exclaiming with surprise as the row they were working on emerged into a visual 
pattern on the graph paper.  Lauren was dismayed to find that she had run out of room on 
her sheet; she quickly jumped up, grabbed another sheet and some scotch tape and 
created a larger sheet on which to work.  After they were finished with their graphing 
they spontaneously started to name or describe their patterns:  "Oh, this one looks like a 
windmill."  "Mine looks like a kite flying!"  "Mine never returns to where I started, it just 
keeps going on and on." 

 
We hung the various graphs up on the wall to make a gallery of graphing patterns.  

The children oohed and ahhed over the various patterns.  We then paired up the reverse 
patterns (the complements of nine).  The children were charmed to see that the numerical 
reversals worked as visual reversals.  Such correspondences between the numerical and 
visual worlds seem to create not only delight for these children, but a sort of security, too. 

 
This graphing activity allows children to explore the rich and somewhat 

surprising idea that a number pattern can also create a visual pattern.  In this case, 
children have gone from the numerical to the visual; the opposite path from the one we 
took with the Golden Rectangle.  Going back and forth from the numerical to the visual, 
and the visual to the numerical facilitates for children a deep appreciation for the ways in 
which the mathematical language of numbers is also a descriptive language of shape and 
form.  Going back and forth from the visual to the numerical also highlights that one can 
start at either place (number or shape) and get to the other, another example of 
reversibility.  Typically, children do not have access to this big idea until sometime in 
secondary school.  Why withhold one of the great aesthetic uses of mathematics and its 
purpose as a descriptive language until so late in a child's life? 
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Visualization of Function:  Magic Number Machines 
 
Another way to begin play with the visualization of number is through imaginary 

magic number machines.  This game uses simple functions in a "Guess My Rule" format.  
For instance, when the number two is put into the magic number machine and a 10 comes 
out, then a three is put in and a 15 comes out, the rule must be "multiply by five."  A 
graph with X and Y axis can be drawn, and the numbers that are put in and the numbers 
that come out (e.g., 2 and 10, 3 and 15) become coordinates that can be graphed as points.  
Line segments, through the points on the graph, can then be drawn.  This game provides a 
simple but elegant introduction to coordinate graphing and enables the children to see 
that they can predict from the graph, number relationships that they had not yet graphed 
("Cool!" was Maggie's word for this discovery).  Children enjoy making up the rules for 
parents to guess as well as the reverse.  As children become more experienced with this 
kind of graphing, squared and cubed functions can be introduced as well as negative 
numbers. 

 
In one class, work with the magic number machine took a playful turn worthy of 

Lewis Carroll.  Alice decided to put a sweater with three buttons into the imaginary 
machine.  This time, the machine was still operating on a "multiply by five" rule.  The 
children were quick to wonder if it would come out as five sweaters with three buttons 
each or five sweaters with 15 buttons each. 

 
 

 
 
 
 
 
 



68 

 

Everything Can Be Measured 
 
Measuring things seems to have the same innate appeal and satisfaction to young 

children as naming things; it's a way of coming to know an object.  There are several big 
ideas that relate to the topic of measurement.  One big idea is the notion that the unit of 
measurement needs to be a standardized unit.  A simple exploration of what happens 
when children measure the length of a rug using their own feet and then compare the 
outcomes can quickly alert children to the necessity for a standardized unit.  Another big 
measurement idea is embedded in measuring with conventional units of measurement 
such as inches and feet or pints and quarts.  Conventional units of measurement such as 
inches and feet or pints and quarts pose the same cognitive challenge as time does; 
children need to construct the concept of how units relate proportionally to each other 
(e.g., there are 12 inches to a foot).  Children first grapple with measurement in ways that 
are similar to how they first encounter the measurement of time, through qualitative 
assessment which involves using any material at hand and then simply counting up how 
much of the material was used.  Of course, this method can lead to certain problems, 
which, in turn, can create the cognitive conflict that is so often the impetus for cognitive 
growth. 

 
For example, in one early Math Trek session some of the participants, having 

finished their job cards, spotted the tub of Unifix cubes.  Kelly exclaimed, "I know!  Let's 
measure how long this room is!"  Several children threw themselves into this task, 
assiduously connected Unifix cubes, and laid them out in a straight row from one end of 
the classroom to the other.  After they were done, they sat back and gazed at their work in 
a satisfied way until Mike pointed out that they still didn't know how many Unifix cubes 
they had used.  Jenny said, "That's not a problem, we'll just count them all up."  So they 
began to count, one child starting at one end and another child starting at the other end, 
and yet another child picking a random place in the middle to begin his count.  It was 
"counting chaos" as they verbalized the counting string in quite audible whispers.  The 
children began to complain that they were getting distracted by the other counters and 
were losing track.  We brought the group together to solve this problem, asking, "What 
can you do to make the job of counting these cubes easier?"  After some initial shrugging 
of shoulders, Jenny said, "We could have just one person do the counting."  Alex 
objected, "It will take too long.  We'll be here all day!"  Kelly said, "What if we counted 
by twos or something?"  Jenny, picking up on this notion said, "We could count by fives, 
that's even quicker!"  Mike said, "Tens are even better!"  We asked, "How come?"  Mike 
said, "Because they're twice as big as fives!"  We then asked the children how they would 
proceed.  Kelly said, "We'll still have to count out each ten before we can count by tens.  
Let's make a ten stick!  Then we won't have to count out 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 all the 
time.  We can just line the stick up, then push it up."  The other children were intrigued 
with this suggestion and crowded around to watch Kelly make her ten stick and then to 
"measure" with it.  The session ended before they could get their final count and they 
were very distressed.  We asked them how they could "save" their work so they could 
find out the answer the next time they came.  Jenny said, "I know!  We can ask the kids 
who come here every day to finish the job.  I'll write them a note."  Mike said, "Let's 
write down in our Book of Numbers what we got to, and then put a mark on the rug to 
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show where we left off."  We quickly suggested putting down a piece of tape instead of 
marking up the rug. 

 
The next session, the children quickly resumed their activity of determining the 

length of the rug.  One child seemed to forget about the use of the ten-stick and where 
they had left off and began to make another long unifix train.  Kelly informed her that she 
didn't have to do that:  "Don't you remember our measuring stick?  Let's use that again!  
And we can start where we left off, so we don't have to make such a long train."  The 
children quickly finished their project, but were dismayed to find that when they came to 
the end of their measuring, they couldn't put the whole ten-stick down.  We asked, "So 
what are you going to do about the fact that you can't fit another ten-stick down?"  Mike 
said, "Aw, let's just forget about it.  We got 27 down, so that's the answer."  Alex 
responded, "You can't do that, you can't just forget about it."  Alex then counted how 
many individual cubes would fit in the space that was left and said, "It's 27 tens and four 
left over.  We can add that on when we figure out how much 27 tens are." 

 
Resolving that last problem might have ended the whole activity except that 

another group of children became intrigued with the idea of measuring the length of the 
room.  They proceeded in their own way, but came up with a different final count of 
unifix cubes.  The two conflicting answers paved the way for discussion of another 
important measurement idea:  measurement error. 

 
We said at the beginning of this section that children love to measure, and that 

measurement is another way to come to know an object.  Another big idea in 
measurement is the intriguing notion that anything can be measured.  A small group of 
Math Trek participants practically bumped into this idea as a result of going off on a 
tangent.  Tangents, of course, are themselves mathematical! 

 
From Triangular Numbers to the Measurement of Angles 

 
For the beginning of one session, we put the first triangular numbers on the 

blackboard.  As the children came in, we invited them to come over and help figure out 
the next number in the series: 

 
            • 
      •     •  • 
  •   •  •   •  •  • 
 •  • •  •  • •  •  •  • 
  3    6      10 
 

At first, the children thought the numbers should just go up by three.  Then they stopped 
looking at the numbers and started to attend to the array of dots formed for each number.  
Their comments let us know that they were quite tuned in to the patterns the dots made:  
"I see, it goes up by one row each time."  "Well, I think that it goes across one more in 
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each row each time you get to a new number."  They then counted up the dots in order to 
figure out the next number in the pattern. 

 
Rich stood back from the blackboard for a few seconds and exclaimed, "Hey!  

They're triangles!"  All the children agreed with Rich that each of the arrays of dots made 
a triangle.  Then Rich said, "And they're called triangles because they have three angles."  
"Gee," said Sean, "If a shape with three angles is called a triangle, maybe a shape with 
just two angles is called a "biangle."  "Yeah," said Paul, "And then if it has only one 
angle it's a uniangle!"  We wondered what a biangle and a uniangle looked like.  Sean 
drew one angle and Paul said he thought maybe a uniangle would be a straight line which 
he then drew.  Then he said that a straight line has 180 degrees.  The children then had a 
vociferous disagreement about whether or not a line was a shape or an angle or neither. 

 
We were now far afield from the issue of triangular numbers, but the children 

clearly were caught up in their discussion of angles.  Going with the flow, we interjected 
the question, "So what is an angle anyway?"  Rachel grabbed some chalk and drew an 
angle and said, "That's an angle."  We asked her, as well as the other children, "Well, 
where do we find angles?"  A chorus of answers descended on us:  "See that table, that's a 
right angle."  "And the blackboard has right angles, too."  Running for the pattern blocks, 
Paul announced, "And all of these shapes have angles, too." 

 
After several more minutes' worth of discussion about all the places in the world 

we find angles, we asked, "So how do we measure angles?"  The children were silent for 
a minute and then Rachel said, "I don't know that, but I do know that right angles are 90 
degrees."  And Paul said, "I already told you a straight line is 180 degrees."  We then 
asked if any of the children would like to explore how to measure angles.  A few children 
were interested while the rest busied themselves with the other activities and job cards 
that were around the room. 

 
We got out the pattern blocks and asked if they could see any angles.  Paul said all 

the shapes had angles and noticed that some shapes had more than one kind of angle.  We 
then asked, "So, do we know anything about any of these angles that would help us get 
started?"  Rachel said, "Yeah, remember, right angles are 90 degrees."  Teacher:  "Could 
knowing that right angles are 90 degrees help us figure out anything about the other 
angles?" 

 
With that directive, the children became quite absorbed in trying to use their 

information about right angles to figure out what the other angles measured.  Paul took a 
rhombus angle and placed it on to one of the right angles of the square.  He spoke softly 
to himself:  "Hmmm, looks like it would take three of this kind of angle to make a right 
angle  . . . so this angle is about 30 degrees."  We asked him how he would prove that.  
After a minute or so he took three rhombuses and placed an angle from each onto the 
square.  Sean watched all this intently and then picked up a parallelogram and said, 
pointing to one of the parallelogram's angles, "This looks like two of the diamond's 
angles, so it would be 60 degrees." 
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Having found a method, the children worked diligently on finding the 
measurement of each angle.  When Paul measured the larger of the rhombus' angles he 
said, "Wow!  150 degrees!  That's hot!"  The other children giggled and commented on 
how funny it was that the same word meant two such different things.  Rich chimed in 
from another part of the room, "Yeah, that happens a lot with words." 

 
Once the children had "proved" how many degrees were in each angle we asked 

them to record their findings.  We casually placed pattern block templates (stencils that 
correspond to the pattern block shapes, though children can also trace around the pattern 
blocks to record their shapes) on the table where they were working.  They took a pattern 
block template and their books of shapes and traced each pattern.  They then recorded the 
number of degrees for each angle right inside the appropriate angle. 

 
When they were finished, we asked them how many degrees there were in each 

shape.  This question led to a hot debate about how many angles were in a hexagon.  Paul 
began to answer the question by saying, "Well, there are six angles in a hexagon, and if 
each one is 120 degrees, then . . . ."  Sean cut him off and said, "But there aren't six 
angles in a hexagon; there are only three."  We asked him what he meant.  He took a 
hexagon and showed me what he considered to be the three angles.  The angles he 
pointed out were not the adjacent ones, but opposite ones.  Paul pointed out what he saw 
as the six angles to Sean, but Sean didn't buy it.  We interjected, "OK, you think if an 
angle shares a line with another angle that it can only count as one angle."  Sean agreed, 
with some measure of relief at being understood.  There ensued a hot debate among the 
children as to what counts as an angle.  We asked Sean how many angles he thought were 
in a triangle.  Without any pause, he said, "Three.  That's why it's called a triangle."  Then 
he gazed thoughtfully at the little green triangle in front of him and slowly said, "Oh, I 
see what you mean, I guess it's okay to share lines, it's how many little points there are, 
that's what tells you how many angles there are." 

 
We then went on to explore how many degrees there were all together in the 

various pattern block shapes.  Paul became the record keeper, using the pattern block 
template to draw the shape in question and then carefully putting the number of total 
degrees right in the center of each shape.  Helen, a guest aide, and a regular classroom 
teacher during the week, wanted to know how many degrees there are in a circle.  The 
children joined her in trying to approximate a circle with the pattern blocks.  During the 
process of creating the circle, Rachel pointed out that the shape gets closer to a circle 
each time more sides are added.  (Burns must have been similarly taken with that idea for 
she has written a book that explores multi-sided shapes called The Greedy Triangle, 
1994).  They went on to figure out the degrees in a straight line by putting two right 
angles together, which caused Paul's eyes to grow wide for he had already known that 
"fact" and now he could see why.  The children ended their exploration by recording their 
observations and calculations in their "Book of Shapes."  Finally, we asked them to 
examine their findings to see if they could find any patterns.  Sean, who enjoyed 
systematizing his observations, had written down the measurements for all the angles in 
descending order.  His method allowed him to quickly spot the fact that all the 
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measurements were multiples of thirty.  Rachel, who had joined us, softly said, "So that's 
why all those pattern blocks fit together so well!" 

 
This activity can be extended even further by asking children to describe the 

relationship between the number of sides (or angles) in a shape and the total number of 
degrees for that shape.  The following is an example: 

 
 # of sides degrees 
 
 3 180 
 4 360 
 5 
 6 720 
 

Children will notice that they don't know how many degrees are in a 5-sided shape.  At 
this point, they can be asked to construct a pentagon by using two or more of the pattern 
blocks, and then to figure out how many degrees are in the shape.  Alternatively, children 
could be asked to deduce the number of degrees by examining the data already on the 
table.  After the pentagon question is solved, the children can be asked to figure out how 
many degrees in a 12-sided shape.  Some children may even be interested in creating an 
equation that would show how to derive the number of degrees by knowing the number 
of sides. 

 
Estimation 

 
Another ongoing theme over the two years of Math Trek was estimation.  

Estimation is a versatile mathematical tool that introduces children to the importance of 
flexibility in mathematics.  Playing with estimation inevitably leads to questions:  When 
is it reasonable to estimate?  What is a reasonable estimate?  When is it important to be 
precise? 

 
At Math Trek we played with estimation in a number of ways.  One of the 

teachers made estimation a running theme in her classroom by instituting an estimation 
jar.  She further personalized it by asking the children to take turns bringing in something 
to estimate each week.  The children were very invested in this activity, taking great pride 
in coming up with an estimation jar when it was their turn.  Jars came in filled with rocks, 
cookies, popcorn, beans, macaroni, and, most ingeniously, with broken egg shells.  It was 
the week after Easter, and all those dyed eggs were put to a final good use.  The children 
were charmed and intrigued by this jar of crumpled egg shells and became engaged in a 
heated debate about how many broken egg shells would constitute one whole egg shell.  
Thus, estimation activities may lead to considerations of area, volume, and other 
mathematical topics. 

 
The teacher in this class also devised a unique way to elicit risk-taking with 

estimation activities.  Often, when asked to verbalize their estimates, there is a distinct 
tendency for children to play it safe and give an estimate close to the one they have just 
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heard.  Here, however, the children were asked to write their estimates simultaneously on 
a sticky note.  This way, the children were not aware of what anybody else was 
estimating, and were free to figure something out for themselves. 

 
After their estimates were recorded, the children were invited to go up to the 

blackboard and place their estimates along an imaginary number line.  That is, the 
children were asked to order and sequence their estimates without any markers.  In this 
way, the task became more challenging and involved other aspects of number sense.  
Conceptualizing numbers in this spatial way also encouraged the children to see numbers 
in relation to one another.  If Janie just put up her estimate of 100 smack in the middle of 
the blackboard, where will Reggie put his estimate of 125?  At the end of the board or 
closer to the 100?  Well, it would depend on where Tim had put his estimate of 200.  
Statistical concepts of range, mode, median, and mean become visual, accessible, and 
meaningful when put in this context.  These statistical concepts can also be highlighted in 
a discussion of the children's estimates after everyone has placed their estimates on the 
board.  Questions such as, What's the smallest estimate?  What's the largest estimate?  
What's the difference between them?  What's the most popular guess?  What's the average 
guess?  What's the median (middle) guess? help children to focus on ways to make sense 
of data.  Asking children to provide a rationale for their guesses encourages them to be 
reflective and alerts other children to alternative strategies and dimensions. 

 
Estimation can also be woven into the fabric of school life in casual ways.  For 

instance, snack time at Math Trek often provided informal estimation exercises that 
seemed natural and reasonable to the children.  The dried lemonade, the jars of cookies, 
the packages of pretzels were all fair game for initial estimates.  The children were then 
asked to quantify the amount of snack they were given, and to revise their estimates of 
how many items had been contained in the jar or package.  Their strategies included 
counting the children present and multiplying that number by the number of cookies or 
pretzels they had in hand.  Some children used serving size and weight information on 
package labels in their calculations.  Subsequent revisions were often closer to the mark, 
and the children were packing away more than calories with their snacks. 

 
The Open-Court Real Math Thinking Stories has several engaging stories 

concerning estimation.  The character named Ferdie loves to estimate and finds that most 
mathematical situations in his life require only estimation.  Portia, on the other hand, 
thinks that precise answers are required.  Naturally, Ferdie and Portia come to 
loggerheads on this issue.  The plots involve them in situations favoring one or the other.  
The children, at first drawn in by the humor in the stories, also began to identify with one 
or the other of the characters.  Johnnie fondly began to refer to the characters as 
"Estimating Ferdie and Precise Portia."  The children easily generated descriptions of 
comparable situations in their own lives. 

 
Probability 

 
Some big ideas were not so much thematic units as they were leitmotifs that were 

returned to again and again.  Probability was one of them.  The topic of probability is one 
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that permeates our lives, from the time we are in our cribs trying to figure out what will 
make those grown-ups come and get us, to our first board games with dice, to our grown-
up concerns about earthquakes, disasters, insurance, and lotteries. 

 
This is also a topic about which even young children develop some working 

intuitions.  For instance, in playing the game "Lots of Boxes," the children noticed that it 
was easier to roll two different numbers on two throws of the die than it was to roll the 
same number twice in a row.  Then there's the old coin toss trick:  Will the coin come up 
heads more times or tails more times?  Suppose you come up with heads ten times?  Does 
that mean you'll be sure to get tails next time?  Most children, indeed, most adults, will 
venture that the coin is sure to be tails next time.  The idea that each toss of the coin is an 
independent event is a difficult concept to master, and rather counter-intuitive.  Indeed, it 
takes many years to come fully to believe and understand that each throw of the die is 
independent.  Probability is one area where magical thinking still has a stronghold even 
on adults' reasoning.  Thus, at Math Trek, we decided to make sure that the children 
encountered and worked with notions of probability throughout the two years, taking 
particular care to exploit those times when issues of probability surfaced naturally, as 
with the "Lots of Boxes" game or with the game of "Pig" (see below). 

 
We also tried to elicit and stimulate their thinking about probability by reading 

various stories that embed probability issues, and playing games that specifically involve 
the concept.  The mathematics book in the Childcraft series entitled Mathemagic includes 
some rich play with probability that is easy to act out in the classroom.  In one story, 
Prince Ali Kwazoor makes a dangerous journey to find the Treasure of Samarkand.  He 
finds the treasure, but before he is allowed to have it, the Wizard of Hind informs him 
that he must pass a test.  The Wizard holds out two boxes.  In the red box, there is one 
black pebble and three white ones and in the yellow box there are seven pebbles, three 
black and four white.  The task is to pick a black pebble from one of the boxes without 
looking. 

 
In one class, the children were very excited by this story.  The teacher had her 

boxes ready, and each child got to pretend to be Prince Ali making his choice.  Of course, 
unlike the Prince Ali of the story, these princes had to explain their reasoning, too.  Most 
children picked the yellow box, explaining that having three black pebbles gives you 
more chances to pick a black than the red box which only gives you one chance to pick a 
black.  One child thought perhaps the red box would be better because there were fewer 
pebbles to choose from.  No one realized, however, that 3/7 was bigger than 1/4. 

 
A similar story is told in the Real Math Series (see Annotated Bibliography).  

This story, entitled Iron and Gold, embeds a series of problems involving probabilities as 
children choose bags containing the most gold or rubies.  These stories are valuable 
because they pose the same issues using different quantities, thus stretching children's 
thinking about probability as well as the role of quantity in probability. 

 
Another game from the Mathemagic book involved figuring out your chances of 

rolling a particular sum when using two dice by listing all the combinations that could get 
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you to that sum.  This exercise was handy for helping children realize the importance of 
writing down results in order to keep track of things.  The follow-up activity after 
figuring out all the combinations for each of the possible sums one gets by rolling two 
dice (i.e., 2 - 12) was to roll a pair of dice 50 times, keeping track of the numbers that 
came up.  This exercise demonstrated that if there are more ways to get to a sum, then 
that sum will be rolled more often.  As Sarah exclaimed, "Would you look at that?  Six, 
seven and eight do come up more often!  And now I know why." 

 
Another way to involve children in thinking about probability is to play the game 

of Pig.  Choosing either addition or multiplication, one person (preferably the teacher) 
rolls two dice and calls out the number.  For addition, the numbers that appear on the dice 
are added together; for multiplication, the numbers are multiplied.  The object of the 
game is to attain the highest possible number before a one is rolled.  As long as neither 
die rolled turns up a one, the players are allowed to put the combined number down on 
their sheet.  They can then choose to continue the play or to stop there.  If they continue 
to play the game, there is always a chance that a one will appear on the next roll.  If a one 
does appear, they lose all the points they have already accumulated.  Children love the 
risk-taking involved in this game and are unwittingly gaining practice with addition or 
multiplication (or both, as they must tally up their score to see who won). 

 
Inevitably, the discussion that occurs during this game will begin to focus on the 

issue of when a one will be rolled.  As Kenny said, "I just know it's gonna be a one next 
time, I just know it."  "Well Kenny, how do you know that?"  " 'Cause there hasn't been a 
one yet and we're on our seventh round."  "So, if you haven't rolled a one six times in a 
row, it has to be a one the next time?  It sounds like you have a rule in mind:  Ones 
always turn up if you roll the dice seven times.  Does everyone agree with that rule?"  
Andy frowned a bit and shook his head.  "Andy, you look like you disagree."  Andy 
slowly spoke up:  "I don't think so.  I don't think we can tell if a one is going to come up 
next.  There isn't any way to tell." 

 
We asked the children to predict what would occur on the seventh roll.  The 

children quickly chose sides, with exclamations of, "It has to be a one next!  It has to be!" 
or "Nah, it could be any number."  The dice were rolled ceremoniously.  A two and a six 
came up.  Kenny shook his head in disgust.  We said, "Hmmm, what does this mean that 
a one still didn't come up?"  The children shrugged and thought for a while.  Laura piped 
up, "That you can roll and roll the dice and you never can tell what it will be?"  We 
asked, "So even if these dice were rolled a hundred times we might not roll a single one?"  
Kenny spoke up again:  "No, we would have to get a one some time.  Maybe on the 
eighth or ninth roll." 

 
The children still seemed perplexed, so we dropped the issue and continued to 

play the game.  As it turned out, on the ninth roll, a one did turn up, and all those still in 
the game had to forfeit their points.  We asked if they had a new rule to determine when a 
one would come up.  Rich said, "You rolled a one the ninth time, so it takes nine turns!"  
Sarah said, "But it could come up any time in those nine rolls." 
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It was time for recess, so we didn't pursue the topic any further.  Even if it hadn't 
been recess, it was time to end the discussion for the children were feeling a bit rattled. 
However, a germ of an idea had been planted that would have to coexist with or supplant 
their intuitions about probability.  A good way to invite children to test their hypotheses 
about probability would be to graph the numbers rolled whenever the game of Pig is 
played.  After several of these graphs were constructed, the issues surrounding the rolling 
of a one might become clearer.  Again, the idea that each and every roll of the die is an 
independent event, with the same probability of rolling each number represented on the 
die, is a developmental concept that may well take years to grasp fully. 

 
Sampling 

 
Also relevant to both probability and statistics is the important idea of sampling:  

How can we get information about a population by taking samples of that population?  
This subject is accessible even for young children to contemplate, especially if the 
sampling issue is relevant to their lives.  The Exploratory Data Workshop at the 
University of Washington exploited one such relevant case when the company making 
M&M® candies replaced tan M&M's® with blue ones.  Children were given covered dixie 
cups with 12 candies in each.  The task was to determine whether the candy came from a 
new bag or from an old bag.  After poking a small hole in the cover, the children shook 
out one candy and were asked to put a sticky note on their cup that announced whether 
they thought their candy came from a new bag, an old bag, or if the data were 
inconclusive.  The results were graphed.  They then put the candy back, shook the cup, 
spilled two candies, and repeated the decision-making and graphing process.  The graphs 
revealed how many more children were correct when using the larger sample.  Thus, 
children confronted sampling variability and how sampling size affects judgment. 

 
Estimation activities can also be a good lead-in to sampling.  In one class, a jar of 

multicolored beans were brought in for the children to estimate.  After the children made 
their guesses, several children were eager to determine the actual count.  Given the fact 
that there were over 2,000 beans, this was a time-consuming activity.  The children 
employed a variety of strategies, including counting by tens, counting by twos, and 
counting by fifties.  Two enterprising children found a paper cup, filled it with beans and 
then counted the number in the cup.  They then ascertained how many cups the jar could 
contain.  Their final step was to multiply the number of cups by the number in the one 
cup that they had counted.  Their answer was quite close to the other counts.  Their 
strategy led them to another problem:  They wanted to know how many of each kind of 
bean there were.  Janie and Allen could see that there were four kinds.  Janie thought that 
they were evenly distributed and that they could just divide the total number of beans by 
four.  Allen was not convinced.  He thought that there were more red beans.  We asked 
the children how they could resolve this dilemma.  Sonia said, "Oh, no, I don't want to do 
any more counting!"  Janie piped up, "We don't have to count the whole jar again!  We 
could just count how many of each kind of bean in one cup.  That would tell us."  Allen 
was doubtful:  "But maybe not as many reds will get into that cup.  How can you tell if 
what's in that cup is the same as what's in the jar?"  Sonia said, "I know.  We'll count 
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more than one cupful of beans.  Then we can compare results!"  Allen, his brow 
wrinkled, said, "If two cups are good to count, wouldn't three be even better?" 

 
So the children broke up into three groups and diligently worked on this new bean 

problem.  We asked them to record their results in table form so it would be easier to 
read.  The children were amazed by their findings.  Not only were there different 
numbers of the different colored beans, but the total number of beans varied slightly from 
cup to cup!  In our group discussion concerning the results, feelings ran high:  "How can 
we ever know what the truth really is if we have all these different answers?"  This was a 
great opportunity to introduce the idea of sampling error.  We also wondered aloud how 
we could deal with the different numbers on the table.  Craig offered, "Find out the 
average!"  This suggestion seemed to satisfy the children. 

 
Conclusion 

 
There are, no doubt, many other Big Ideas and Big Questions that would engage 

children in making sense of mathematics, as well as many other activities that would also 
provide good paths into the Big Ideas.  By keeping our attention focused on both Big 
Ideas and children's thinking about those ideas, curriculum planning was consistently a 
stimulating, reflective, and educational process.  It was also an ongoing process; if an 
activity or question did not work out well, our own learning and mucking around with 
concepts and activities gave us the flexibility and knowledge to try another tack. 

 
Other Big Ideas that we interwove into our curriculum included the idea that there 

is a history to mathematics and that people invented it; that numeric systems involve 
different bases (e.g., the Babylonian system is based on 6); that there are different kinds 
of numbers (e.g., negative, rational, irrational); and the idea of reference units (e.g., in 
fractions, any number, such as 12, can be the whole as in 2/3 of 12).  In the next chapter, 
we describe ways in which to integrate math into other discipline areas (and vice versa) 
and we also take up the issue of assessment. 
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CHAPTER 7:  Integrating and Assessing Math 
 
 
On the way home after the first session of the second year of Saturday Club, 

Peter's mother asked him what math he had worked with that day.  Peter replied, "It was 
fun, but we didn't do any math."  Switch now to the end of this second year when the 
third round of testing began.  Peter was tested and on his way home his mother said, 
"Remember last year when you were tested and the tester asked if you did any math at 
home and you said we never did any math at home?"  Peter replied, "Yeah, but that was 
before I knew math was so many things!" 

 
Peter had tapped in to a major goal of Saturday Club:  To help children to see the 

numerous ways mathematics permeates their world.  To that end, many of the curriculum 
activities were designed to broaden and expand children's awareness of mathematics and 
its many applications in the world.  One method we used to accomplish that goal was to 
integrate mathematical topics with other disciplines such as science, art, history, and 
literature.  Thus, when we explored different numeration systems, we presented them in 
historical context, discussing ways in which the symbols might have something to do 
with the lives of the people who invented that system.  Art was an integral part of 
Saturday Clubs, from origami to making colorful designs with Golden Rectangles, to 
pattern-making with pattern blocks and inch cubes as well as tessellating and tiling.  A 
tie-in to science occurred with our exploration of batteries and bulbs.  For literature and 
language arts we made extensive use of children's books, stories that incorporated 
mathematics (e.g., Open Court and the Anno books) and assignments that invited children 
to write their own stories for various types of equations.  We now explore these 
interrelationships. 

 
Math and Literature 

 
Given children's love of stories, bringing books into mathematics and 

mathematics into books is a natural and rewarding combination.  There are many "How-
To's" on the market now that encourage teachers to use children's literature in the math 
area (see Annotated Bibliography).  These books describe extensive units that tie in to 
specific works of children's literature that can be used to teach specific mathematical 
concepts and skills such as probability, graphing, and measurement.  We would caution, 
however, that such tie-ins be pursued with a light touch; both mathematics and literature 
are to be prized for their inherent aesthetic and intellectual qualities and neither subject 
should be forced to be a hand-maiden to the other. 

 
However, having a light touch also involves making the most of opportunities that 

come up almost naturally.  Perceiving these natural opportunities involves teachers 
themselves seeing how much mathematics permeates the world and then creating a 
climate in the classroom where no matter what is being studied, mathematics can be 
brought in where appropriate. 
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For instance, in the first year of Saturday Club, telling stories and reading stories 
were good ways to help children focus and to build group cohesion.  One class of 
children thought they were too big for picture books and resented having any read to 
them; for this group we told stories instead, embedding an interesting mathematical 
problem within the story.  In one example, a strong visual image was created as a context 
for the popular chicken and cow leg problem.  In this problem, a farmer sees 24 legs 
through a fence; how many belong to cows and how many to chickens?  A story was 
created about a person walking down a long dusty road in Tanzania, where the red clay in 
the Great Rift Valley colors the road red and creates a lot of dust.  In the distance, 24 legs 
are perceived behind a fence, but the cloud of dust makes it impossible to determine how 
many of those legs belong to ostriches and how many to warthogs. 

 
The children were spellbound during the story and moved off soundlessly to 

figure out the answer, together or alone, using drawings, unifix cubes, or inch cubes.  
Thus, this story respected their "maturity," won their attention, and got them engaged in a 
problem they might otherwise have scoffed at.  At the end of the work time, the children 
were also quite willing to share their different strategies and solutions and to marvel 
together over the fact that there was more than one right answer. 

 
For another group of children, who loved picture books, a variety of materials 

were used.  In one instance, the delightful book, A House is a House for Me by Hoberman 
(1978), was read to the children.  They loved the rhyming story, the ingenious and 
detailed pictures, and the unexpected notion that almost any object can be viewed as a 
house for another object.  Extending the metaphorical use of "house," the children came 
up with a profusion of examples of their own.  We suggested that they also look around 
the room.  Pretty soon, the examples proliferated, yielding such charms as:  a hard drive 
is a house for software, a desk is a house for pencils and paper, and a blackboard is a 
house for writing.  We then wondered aloud about what the various math manipulatives 
might be "houses" for.  The children erupted with:  "I know, I know, pattern blocks are 
houses for patterns, base-10 blocks are houses for tens, and tangrams are houses for 
shapes!"  In this imaginative, humorous way, mathematical ideas were effortlessly tied 
into a story.  And children were invited to conceptualize the meaning of manipulatives. 

 
Some works of children's literature are designed with mathematical concepts in 

mind.  One glorious example is Anno's Mysterious Multiplying Jar.  In this gorgeously 
illustrated book on factorials, children are invited to contemplate numbers that increase 
exponentially.  For the first several pages, children can be invited to do the calculations 
mentally; after that, they need calculators.  Large numbers have a special fascination for 
young children, and this is in evidence on their faces as they watch the numbers grow 
ever larger.  As Cathy said, "Ouch, my head is beginning to hurt with all those big 
numbers!"  The concept of factorials and the way in which factorials make numbers grow 
so large proves to have staying power for children.  Weeks after this book was read, 
children would mention it.  And months later when we constructed an alphabet of 
mathematical terms, factorial was mentioned for 'F' words. 
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Other Anno books were also tremendously popular in Saturday Clubs.  In the first 
volume of Anno's Math Games, combinatorial logic was introduced through the issue of 
inventions that result from combining other inventions.  For instance, think of the 
common pencil with an eraser, alarm clocks, and umbrellas with handles.  The children 
were assigned the task of coming up with their own combined inventions and drawing 
them.  In the same book, the concept of coordinates was explored through creating 
"addresses" for seats in a movie theater.  This story could be used to great advantage as a 
prelude to a study of coordinate graphing. 

 
Yet another Anno book, Anno's Hats, with its probability play, was read to each 

group of Saturday Clubbers.  In one class, however, children took matters into their own 
hands.  They had listened patiently to the story and struggled with predicting which hat 
was on which character, but they hadn't been as excited or as engaged as the teacher had 
hoped.  Just as the story was finished being read, a postal worker came to deliver some 
mail.  Julia looked up, scurried to get a piece of paper and a pen, and quickly scribbled a 
message.  When the teacher took the stack of mail from the postal worker, Julia ran over 
and put her message on top.  Then she said, "Joy, please read that letter to us!"  Joy was 
bewildered, but complied.  The note said:  "Please come to a performance of Anno's Hat 
right after recess." 

During recess Julia corralled a couple of her friends and they made hats in the 
colors described in the book.  They quickly rehearsed and were ready for their peers 
when they trooped in after recess.  They then proceeded to dramatize the book.  The other 
children were enthralled and participated far more than when the book had simply been 
read to them.  Having the book enacted also helped them to focus on the issue of 
probability. 

 
In this example, we see that when children are comfortable they can take the 

initiative and find a kinesthetic way to take charge of material and make it their own.  
Children's spontaneous acts often pave the way to "teachable moments." 

 
Math and Science 

 
From astronomy to the chemistry of cooking, children's early appreciation of 

science requires the use of math to quantify, compare, and classify.  Experience with the 
uses of mathematics in science, and the many scientific contexts that use math as a tool, 
will help children to understand different types of numbers and to create an internal 
number line, from negative numbers (say, a centigrade thermometer) through very small 
fractions (say, 1/8 of a teaspoon) to the headiest of large numbers used to describe the 
space between our planet and a distant galaxy.  Math, in the context of science, illustrates 
the interplay of processes such as measurement, estimation, and calculation, and the 
necessity for a logical system of written representation that can express the very small 
and the very large as well as how to arrive at those quantities.  Thus, scientific activities, 
experiments, and thinking can help children see that aspects of math that are usually 
studied in isolation all have a place and a purpose. 
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While even some math-talented children are mystified by conventional ways of 
representing number, other children are fascinated by the logic that underlies numerical 
representation, for example, using positive exponents and powers to describe 
astronomical distances and negative exponents and powers to describe atomic weights.  
Astronomy and chemistry provide two incentives for grappling with these kinds of 
numbers and their written expression.  Considering two areas together may well help the 
children who are mystified as well as intrigue the children who easily grasp the logic. 

 
One way into science is to begin either by asking children big questions about 

science or listening carefully for children's own question posing.  These big questions 
elicit children's penchant for theorizing about a phenomenon, and their nascent ability to 
theorize collaboratively.  Wonderful examples of this approach to science are described 
in the book, Talking Their Way Into Science:  Hearing Children's Questions and 
Theories, Responding with Curricula by Gallas (1995), a first-second grade teacher from 
Brookline, MA (see Annotated Bibliography). 

 
All children's (and adults') theories revolve around a mental model of what a 

phenomenon is and how it works.  These mental models may start off as inarticulate and 
vaguely formed, but will become elaborated when focused by essential questions and 
opportunities to explore the phenomenon and make it "work."  The following is a 
description of one of Math Trek's scientific explorations.  What were the connections 
between this exploration and math?  While there were no explicit connections, there were 
mathematical ideas such as proportional reasoning, the idea of limits, and equality of 
intensity that underlie the investigation. 

 
Mental Model Building 

 
During both years of Math Trek we wanted the children to experience some 

scientific activities that would inspire them to think about cause and effect, to theorize 
and hypothesize, and to invent their own experiments.  One set of materials we used were 
batteries, bulbs, and wires.  These simple materials were enough to generate several 
sessions worth of intense exploration and plain fun.  In many ways, it was the optimal 
science project for primary age children because it deals with a phenomenon all children 
have encountered and about which they are curious.  The project utilized easily accessible 
materials that were easy to work with and, on the intellectual plane, provided a hands-on 
way to think about causality.  Best of all, the materials extended a wonderful invitation to 
play and to experiment and to wonder about how something works. 

 
The first year, we gave each child a battery, a bulb, and a wire, and simply asked 

that they find a way to light the bulb.  Observing the various ways in which the children 
approached the task gave us more information about individual styles and tempos.  When 
the teachers discussed the session afterwards, it was apparent that the different classes 
had developed distinct personalities.  For instance, in one class the children were silently 
industrious.  In another class, the children were excited and spontaneously began talking 
about electricity, using words and phrases that they had previously heard or been 
"taught."  Despite their verbal knowledge of electricity, however, most children had great 
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difficulty making the bulb light up.  Some children seemed to be approaching the task 
quite randomly, while others seemed to be engaged in systematic trial and error.  Some 
thought that all they had to do was to put the bulb on top of the battery in an attempt to 
copy the evident design of a flashlight.  One child thought that all he had to do was to 
touch the wire to the battery and to the bulb.  One child patiently held the bulb against the 
battery.  When asked what she was doing, Ellen replied, "Well, it's like a car, it's got to 
warm up before it works." 

 
After their initial exploration, this project fostered a great deal of interaction 

among the children as they became curious about what their peers were doing; the result 
was a rich sharing.  Their struggles were interesting to watch, as was the excitement that 
was generated when the first child discovered a way to make the bulb light up.  Some 
children immediately asked the successful child how she had done it; other children 
ignored her and persisted on finding their own solutions.  Yet other children insistently 
asked the teacher or one of the aides to show them. 

 
Once the children, with or without assistance, figured out how to light the bulb, 

they began to generate their own experiments and projects.  For instance, if one battery 
lights up a bulb to a certain degree of brightness, how much brighter would the bulb 
become with two batteries?  Or three?  Or four?  The intrepid children who tried four 
batteries got a surprise:  The light bulb popped.  Oops!  Some children quickly went on to 
other projects such as seeing if they could combine their resources and hook up more 
than one light bulb at a time.  Other children continued to explore ways to make the light 
bulb light up.  For instance, does the wire have to touch the knob on top of the battery, or 
could it touch anywhere on the top or the bottom?  What happens if the wire touches the 
side?  Does the base of the bulb have to be touched by the wire, or could any part of the 
bulb be touched?  And some children simply sat there with their one bulb glowing, 
absorbed in the fascination of this phenomenon. 

 
Observing their explorations led the teachers and aides to pose some basic 

questions:  "How come we have to touch the battery and bulb in those ways in order to 
make it work?  How come it doesn't work if the battery touches the coated part of the 
wire?  What's inside the bulb that helps to make it light up?"  How does the battery make 
the bulb light up?  What do you think is inside the battery?  What role does the little wire 
play?"  In a sense, these questions seemed to give voice to the children's unspoken 
questions as they explored the materials and generated tasks for themselves.  Some 
children attempted to verbalize their thoughts about causality in relation to electricity; 
others chose not to.  However, all children seemed to be taking in the spirit of the 
questions and reveling in the atmosphere of inquiry and exploration. 

 
The next time the children came we again had the batteries, bulbs, and wires out, 

this time adding bulb holders as well.  Upon arrival, the children came running over to 
the table where we had the materials set up, and once again began their explorations.  
Except for Ricky, who arrived with his dad.  His dad proudly carried in a board with 
circuits and bulbs that he had made for his son.  While Ricky was proud of what his dad 
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had made, his own interest in the phenomenon of electricity had diminished.  In this case, 
the father was nurturing his own talents instead of fostering his son's. 

 
The first order of business for most of the children was to verify for themselves 

that they remembered how to make the bulbs light up.  For some children, this involved 
the same series of mistakes as the last time (e.g., not putting the wire on both ends of the 
battery) and a reconceptualizing of the issue of what makes the bulb light up.  Other 
children quickly got their bulbs to shine; they wanted to go on to other projects.  For 
these children, we suggested that they figure out how to make more than one bulb light 
up with the same intensity using only one battery.  This task appealed to them and they 
worked together to solve the problem.  Three children managed to connect more than one 
light bulb.  However, they immediately noticed that the two bulbs that lit up were dimmer 
than when just one bulb was lit and questioned why that would be. The dominant theory 
that they expressed was that the bulbs were sharing the electricity generated by the 
battery.  They decided that what they should do was to add another battery.  This led to 
some engineering exploration:  How to make the batteries stay together without holding 
on to them.  A quick search procured rubber bands which, with some finessing, did the 
trick. 

 
Another group of children seemed to have decided that lights are to be used, not 

just explored.  This group set about making a little pattern block village which they then 
lit up with their batteries and bulbs.  Two other children created origami structures and 
inserted the lit bulbs inside their paper creations. 

 
All the children were asked to draw a representation of their work with the 

batteries and bulbs.  They were subsequently asked, "Which book (number, shape, or 
logic) are you going to put your drawing in?"  Some children thought maybe the shape 
book would be best given the fact that batteries and bulbs possess shape.  Other children 
were adamant that it should go in the logic book because, "You hafta do it in a logical 
way or the bulb won't light up." 

 
 

 
 
 
Math Trek was drawing to a close for the summer, so we took up further 

elaboration of batteries and bulbs the following year.  In one class, before any materials 
were set out, the teacher asked the children to draw their ideas about how the bulb is 
made to light up and then test their ideas by building their representations.  Not 
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surprisingly, there were many misconceptions.  The children were asked to make a 
drawing that would correct the problem.  This process of drawing their incipient models 
of how electricity works was quite productive.  Pretty soon the children were discussing 
where the problems might be and articulating their theories to themselves and to each 
other.  It took a different number of drawings per child, but eventually the drawings led to 
the satisfactory conclusion of lit bulbs. 

 
In two classes, the exploration moved on to the question, "Which materials 

conduct electricity?"  The teachers brought a variety of metallic and non-metallic 
materials and the children set about testing their theories about the conductivity of these 
different materials.  One theory that came up repeatedly was the idea that materials that 
are silver conduct electricity.  After all, wires are mostly silver, and the aluminum foil 
worked, too.  The children were invited to test that hypothesis by using mylar.  Before 
actually constructing the circuit, they were asked to make predictions.  The children were 
fairly confident that the mylar would work.  They were quite disconcerted when the light 
bulb did not light up; back to the drawing board, as it were.  Renee ventured this:  "I think 
maybe it isn't the color that matters.  'Cause the reddish wires (copper) work, too, and 
they're not silver.  And boy, this stuff (the mylar) sure does nothing." 

 
An aide interjected at this point, "So, do you have a rule then for what works and 

what doesn't?"  Mark quietly said, "Maybe it's what the stuff is made of, not what color it 
is."  Although the children were asked to expound more on that thought, they had enough 
for one session and were content to leave it at that.  By the next class, however, it was 
clear that the children had continued to think about the puzzle at home.  With or without 
parental help, they had grasped the essential idea that metal conducts. 

 
After these two sessions, we moved on to other topics and activities.  However, 

batteries and bulbs was a popular request for the activity part of the last session deemed 
"Children's Choice." 

 
Math and Writing 

 
Mathematics and writing have also become a dynamic duo in mathematics 

education.  This pairing gives children the opportunity to communicate their reasoning 
and to struggle with the complexities of representing thought on paper.  This struggle 
allows children to not only communicate to others, but also to themselves; in this way, 
implicit and intuitive notions about mathematics become explicit and better known. 

 
At Saturday Club sessions we encouraged writing in several ways.  At the end of 

each session we asked the children to write about something they had learned or 
particularly enjoyed that day.  Because some of the children who attended were quite 
young (age five at the beginning of Saturday Club), we also encouraged them to draw a 
picture about what they learned if writing was not their preferred medium of expression 
yet.  Drawing is actually an important entry point into writing (see Vygotsky, 1962) and 
helps children to see that representing thinking is a rewarding and communicative 
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process.  For older children, drawing lends itself to visualizing problems, a process which 
aids in solving the problems. 

 
 

 
 
 
Another way in which we encouraged writing was to ask children to write stories 

for equations.  Children are quite used to reading or hearing story problems for the 
various operations, but the request to write a story for an equation, to become the author 
of the story problem, was novel.  The children were quite engaged by this task and 
typically both wrote stories and illustrated them.  Over many weeks the children wrote 
stories for the following equations: 

 
 17 + 6,  19 - 11,  10 - 10,  0 - 3,  12 x 24,  18/3 
 
We purposely gave some equations that were no longer problematic for children 

(e.g., the addition and subtraction ones) in order to contrast stories and pictures used to 
represent prior understandings versus the use of stories and pictures to help create 
understandings.  Creating a plausible story for zero take away three pushed the children 
to think through what negative numbers really mean in an actual life context. 

 
Recording and Representation:  A Problem to Solve and Another Way 

to Assess Understanding 
 
While math journals are becoming a more common facet of math programs, we 

find that many children resist documenting their mathematical thinking, perhaps because 
they view writing as irrelevant to math, or simply because it is difficult to represent.  At 
Math Trek, we worked hard to help participants find writing about math useful and 
interesting.  We capitalized on children's natural affinity for ritual and celebration by 
framing the task of recording mathematical thinking as a ritual that we could celebrate 
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each session.  The celebration began when we asked children to make three books in 
which to record different aspects of their mathematical work:  "My Book of Numbers," 
"My Book of Shapes," and "My Book of Logic" and to first consider why they might be 
making these books, and how they might be useful.  Some of the responses were:  "So we 
can put our favorite numbers and shapes in them!"  "So we can talk about how to get 
certain numbers and how to make shapes."  The participants generated ideas for other 
books, too, such as "My Book of Patterns" or "My Book of Number Facts."  Intense 
discussion ensued concerning how there could be both number patterns and shape 
patterns, so there didn't have to be a separate book about patterns, and number facts could 
go into the book of numbers.  Many children were puzzled as to what logic was and what 
might go in such a book.  This puzzlement about logic led to a series of talks and 
problems about what constitutes logic and its opposite, including homework in which 
children had to write about an illogical situation (which became their first contribution to 
the "Book of Logic").  These discussions were a prelude to the sorts of discussions we 
had as to which book would be appropriate for a given activity, especially activities that 
combined numbers, shape, and logic.  Even the choice of which book to use (and thus 
how to categorize the mathematics involved) became a problem-solving exercise. 

 
 

 
 
 
The books themselves varied with the teachers' ingenuity.  They consisted of 

various materials such as large file cards hole-punched and bound with yarn, or paper 
stapled to heavy stock paper for cover.  We asked the children to decorate these books 
with appropriate drawings that would convey what the books were about, and they 
responded with enthusiasm, designing the covers with great care and detail.  The act of 
designing covers signaled that the books were special.  These books were kept by the 
teachers and put out at the start of each session along with pencils, pens, and markers, for 
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the children to use at any point.  Graph paper, dot paper, and glue were also put out in 
case they were needed. 

 
We made it clear that the books had several purposes:  To express mathematical 

thoughts, to help solve problems, and to illustrate problem-solving processes.  We also 
shared with the children the fact that their writing and drawing helped us to understand 
their thinking, and that they were our partners in research.  Writing, of course, is an 
important tool for research and therefore gave children a reason to write.  Having an 
audience in mind also motivates writing.  Therefore, we suggested that they write for the 
children in the session that they did not attend.  Especially because many children had 
only beginning writing skills, parents were called upon at the end of the session to help 
record the children's words. 

 
Once or twice a session, at the end of an activity or at the end of the session, we 

requested that the children use their books to record and reflect on their activities.  We 
varied the instructions, however, to keep the act of recording interesting, challenging, and 
novel.  We also frequently individually tailored the assignments.  For instance, after 
playing the Chip-Trading Game for the first time, we asked the children to make a 
drawing about the game.  Lainie represented the game by drawing a picture of the playing 
mat, placing a filled-in red circle under the red column, and writing in, "I won!"  After 
the children had more experience playing the game, we asked them to write or draw what 
the red is worth in the Land of Threes.  This request stymied the children until they were 
encouraged to start drawing as a way of solving the problem.  In this instance, the 
children were learning first-hand that representing is also a means of problem-solving. 
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We also had a ready stock of questions to help children who did not quite how to 
start writing.  These questions included:  "What did you learn in math today?"  "What did 
you like best in math this week?"  "What was hard for you?"  "How could you make what 
was easy, harder?"  "How could you make what was hard, easier?"  "What would you 
like to learn about in math?"  "Record how you solved the problem."  "What's another 
way that you could have solved the problem?"  "What did you learn from another child?"  
"Give instructions for the math game (pattern, etc.) that you made today, so that another 
child could follow those instructions." 

 
At times, children diligently worked with the math manipulatives, building tall 

towers, constructing intricate patterns, and fashioning shapes and animals.  The journals 
became a method for challenging children to take their construction expertise and to think 
more deeply about it by drawing their creations in their books.  Andy's base-10 block 
tower repeated a pattern of different-sized blocks that reached as high as the teacher.  The 
teacher commented to him, "It's such a shame that we have to take that down at the end of 
the session.  Could you make a drawing of it so you could make it again next week or 
perhaps so one of your friends could make the exact same one?"  Andy shrugged, took a 
piece of graph paper, and worked for 20 minutes to faithfully represent his building.  He 
captured the numeric value of the blocks by using the grids on the graph paper.  He was 
proud of the results, and we gained insight into his spatial-visual abilities. 

 
In another example involving a structure made from base-10 blocks, Ricky was 

initially resistant to the request to draw a picture of the structure.  So Paul, the teacher, 
took a piece of graph paper and asked if he might draw the picture himself.  Ricky 
shrugged, but agreed.  Paul instructed Ricky to, "Make sure I'm doing it right" and 
commented, "From where I'm sitting, this is what I think your building looks like."  In 
this way, the teacher subtly drew Ricky's attention to the issue of perspective.  Ricky 
became intrigued enough to draw the structure himself.  He made a series of five pictures 
in which he drew the building from each of the four faces as well as from the top looking 
down.  His pictures were not to scale, but they did articulate spatial configuration and 
perspective. 

 
It is interesting to speculate as to why some children do not want to draw or write.  

In this case, perhaps Ricky was stymied by the fact that his building was comprised of 
stacks with holes in them and uncertainty as to how to represent the holes.  This was a 
child who was used to formulating answers speedily; perhaps his high performance mode 
was getting in the way of his taking a risk and doing something he did not already know 
how to do.  The teacher's gentle manner of sitting down, drawing the building himself, 
talking about what he was doing, and inviting Ricky into the process, all helped to defuse 
anxiety and melt resistance to the task. 

 
We were delighted to note that gradually the children no longer required as many 

prompts to use their books; often, they spontaneously grabbed the books during or after 
an activity because it became important to them to record, and a part of their 
mathematical work. 
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Assessment 
 
The Math Trek teachers did not have any formal obligation to assess the children's 

mathematical thinking and behavior.  However, in order to create and revise our 
curriculum, be responsive to the children, and provide occasional feedback to parents, 
ongoing informal assessment became an important feature of our work.  Assessment was 
woven into each activity as we requested that the children articulate their reasoning, 
document their thinking processes in their journals, and engage in joint problem solving, 
and as we observed their engagement with materials, choice of job cards, and 
participation in group discussions.  Their problem posing and extending also provided 
excellent grist for the assessment mill. 

 
Our own record keeping after each session enabled us to document children's 

thinking and activities.  Our meetings provided a forum for sharing notes and 
observations and for speculating about what particular mathematical behaviors actually 
mean.  The different perspectives helped us to make sense of what we observed and 
heard.  In many ways, this was an ideal situation, but one that could be replicated on a 
smaller scale in many schools and in very diverse settings. 
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CHAPTER 8:  Character Profiles 
 
 
Even in Math Trek there was a surprising variety of mathematical interests and 

talents.  Among these five- to seven-year-olds, there were children who were 
computational wizards and loved to calculate; there were children who did not know any 
math facts but who were quite engaged by stories and drawings that related to 
mathematics; there were children who mainly loved construction toys, computers, and 
projects and hated to verbalize their mathematical thinking; and there were children who 
were game for anything.  Thus, it quickly became clear that, as with any class, the 
teachers would need to adapt lessons, questions, and assignments to different 
personalities and cognitive styles. 

 
What follows are short composite character sketches of some of the different 

types of children who came to Math Trek.  This is by no means an exhaustive study of 
mathematically talented children; it is simply an attempt to express various flavors of 
talent that you may well recognize from your own classes.  The other purpose of these 
sketches is to provide some strategies for meeting children on their own terms and 
extending more personal invitations to come along on mathematical investigations. 

 
Creative and Artistic 

 
We'll start with a shy, quiet kindergartner who preferred listening to talking.  It 

was clear from early on that she loved to draw, loved stories, and loved a good game.  
Her mom noted that after she had learned to play the Chip-Trading Game, she made the 
game at home and taught her parents how to play, a clue for us that if her interest was 
piqued, she would take the initiative to play with and extend the relevant ideas. 

 
A magical turning point occurred during our study and discussion of numerals.  

As part of that study, during the middle of the first year, the children were asked to invent 
a numeral character.  Carolyn's character was Zif, the name referring to the letter Z, for at 
that time Carolyn thought that perhaps numerals and letters were the same thing, that is, 
interesting visual signs that are very important to teachers and adults, but a little 
mystifying to five-year-olds.  Carolyn's creativity was unleashed by the opportunity to 
create a character.  Over a period of 8 months, spanning from one Math Trek year to the 
next, she created, on her own, Zif's entire extended family and their several homes as 
well as stories about how they related to each other.  She brought in her latest creation 
each time she came to Math Trek, using the picture or creation as a way to reconnect to 
her teacher and to the group.  During this time, she sorted out the difference between 
letters and numerals and explored all the ways in which number can be used to describe 
families, and shape can be used to create homes and the objects in those homes. 

 
Knowing that stories and drawings were important to Carolyn, her teacher often 

suggested projects to help her get going when she first arrived at Saturday Club.  For 
instance, one Saturday her teacher asked Carolyn for her favorite number.  She promptly 
responded, "17!"  After a short discussion of why 17 was her favorite number, her teacher 
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suggested that she make a book about all the ways to get to the number 17.  She was 
delighted with the suggestion and promptly set to work.  For the next 40 minutes she 
created a book exploring many equations that yield the answer, 17.  She also decorated 
the front of the book with an elaborate "17," once again showing her proclivity for 
drawing and rendering even objective numerals personally meaningful. 

 
Another time, pattern blocks were set out as one choice for the initial activity 

time.  Carolyn quickly made an animal out of the pattern blocks.  She loved to show her 
teacher her creations and would wait patiently for her attention if it was engaged 
elsewhere.  After she showed her animal her teacher suggested that she figure out a way 
to show her pattern- block animal using rubber bands and the Geoboard.  Her eyes grew 
wide at this new possibility and she set to work again, this time trying to figure out how 
to represent something three-dimensional in a two-dimensional form. 

 
Carolyn happened to be in a group that had many children a year older.  In order 

to meet all the needs in the class, there were times when the material seemed to go over 
Carolyn's head.  For instance, when we read The Mysterious Multiplying Jar, she soon 
moved away from the circle of children and went off to a nearby desk to work on a 
drawing project, although she seemed to be listening all the while.  When asked about it 
later she said, "That book made me dizzy.  I think I'll read it later."  This was a nice 
example of self-regulation in a learning situation.  She took in just as much as she wanted 
and felt free enough to pursue something more relevant to her interests at the time. 

 
Toward the latter third of the second year, Carolyn had become a much more 

vocal participant.  During group problem-solving sessions, she piped up with her 
solutions and understandings.  She loved to share her projects during the sharing that 
occurred after the initial activity time each session.  She often paired up with Sarah, a 
child in the next grade.  This was a good combination; Carolyn was stimulated by the 
more sophisticated activities of the older child, and Sarah, an only child, was very 
pleased at the attention and the opportunity to be a leader. 

 
Computational Wizardry 

 
Craig was a remarkable little fellow, who started Math Trek as a kindergartner.  

The first time his teacher met him he proudly announced, "I'm working on a 7th grade 
math book!"  His teacher asked, "Oh.  What are you enjoying learning about?"  He said, 
"Algebra!"  His teacher was intrigued:  "What is algebra?"  At that point, with 
characteristic five-year-oldness, he ran off to play with the Googleplex—a construction 
toy comprised of pentagons, wheels, and other shapes. 

 
His favorite activity with the Googleplex involved making wheels and then rolling 

them in the hall.  He was particularly interested in making a complex combination of 
wheels attached by a Googleplex gizmo sturdy enough that it wouldn't fall apart on 
impact as it was rolled vigorously down the hall.  Although his preference was to work 
by himself, his Googleplex constructions and stability testing served to bring other 
children into his orbit. 
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Interestingly, Craig was willing to talk about his construction activities, and could 
articulate goals and theories about how to reach that goal.  He just didn't want to engage 
in such talk about computations or numerical kinds of problem solving.  One of our goals 
for Craig was to help him wed his considerable interest in numbers and the manipulating 
of them to more contextualized and verbalized problem solving. 

 
There were two remarkable incidents with Craig that heightened the importance 

of the goals we had set for him.  One involved solving a multiplication word problem in 
this context:  There are 12 Christmas trees with 64 lights on each tree; how many lights in 
all?  Craig preferred to work by himself.  When his teacher came over to him, about ten 
minutes after the problem solving had begun, he was saying aloud, "Well, let's see, I 
think I know what 12 x 4 is.  Hmmm.  Let me just think about it some more, 12 x 4, 12 x 
4."  His teacher asked, "Do you think you could figure out what 12 x 4 is?  Instead of 
trying to remember what it is?"  Craig shook his head.  It was then suggested that he pair 
up with another child, Peter, about the same age, who had figured out his own strategy 
for getting the answer.  Craig briefly glanced at Peter's work and gave up on the problem. 

 
Reflecting back on this episode, it seemed apparent that Craig was not yet ready 

to learn from or to teach peers.  We wondered if he would engage more if he worked with 
an adult who could tune in to him and provide an appropriate level of stimulation.  One of 
the male college students who came each session began to spend a little more time with 
Craig, especially during the initial activity.  Craig thrived on this attention, especially 
since it came from a young adult male.  Together they explored issues such as the area of 
squares and triangles and how they relate, batteries and bulbs, and golden rectangles.  
Craig gradually became more willing to apply his computational knowledge to word 
problems and other contexts. 

 
Toward the end of the second year, the following problem was posed on the board 

for one of the several choices of initial activities:  "Find a number that's less than 70 and 
whose factors are 3, 4, 5 and 6" (adapted from Schifter & Fosnot, 1993).  Most of the 
children chose a different activity or problem.  One girl, Tanya, was still having some 
difficulty separating from her mother, so her teacher used the problem to help Tanya 
separate.  This was always a tricky matter; Tanya had chronic severe separation anxiety 
and her mother often became so engaged in the activities and problems that she, too, 
didn't want to leave.  She also had a tendency to help Tanya figure out a problem by 
telling her what strategies to use.  Here, too, Tanya's mom became quickly engrossed.  
She began by asking Tanya if she knew the trick to figure out whether any given number 
had a factor of 3.  The teacher gently reminded the Mom that Tanya could probably 
figure out her own way to solve the problem and would be glad to hear the mother's trick 
after she had had a chance to figure it out on her own.  At that point, the Mom went off to 
read in the hall. 

 
As soon as Craig came in, the teacher asked his help in solving the problem.  The 

two children barely took notice of each other as they worked on the problem.  In an 
attempt to facilitate joint problem solving, the teacher spent some time calling Craig's 
attention to what Tanya had just said.  Craig did not seem to be listening to her at all until 
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she exclaimed, "Oh, the number would have to end in a 0 or a 5 if 5 is going to be a 
factor of that number."  Craig looked up at her curiously and said, "Yeah, because if you 
multiply 5 it always has a 0 or a 10 in the answer . . . then that would mean we could 
eliminate all the other numbers.  Let's figure out if 65 is the answer."  Pretty soon, they 
were collaborating, feeding off each other's ideas, and listening to each other's strategies.  
This joint problem-solving session ended successfully—the problem was solved, as was 
the issue of collaboration. 

 
It is interesting to note that this factor problem involved only number 

relationships; it did not refer to any real life context or require a known algorithm.  
Pulling away from algorithmic knowledge and not demanding applied problem solving 
seemed to offer Craig just what he needed, both in the realm of problem solving and 
collaboration.  Sometimes the answer lies in finding just the right problem. 

 
Marching to a Different Drummer 

 
Danny was a lively, articulate, self-directed youngster whose intuitive knowledge 

of the number system was as advanced as that of any child in Math Trek.  His behavior 
was, however, taxing to say the least, until we learned to adapt.  He was initially placed 
in an afternoon group because of his age, but he always arrived in his father's arms, 
sleepy or sleeping, and loudly voicing his objections—until we supported his choice to go 
home, at which point he insisted on staying.  (Only much later did we learn that he was 
taking antihistamines for allergies, which no doubt contributed to the sleepiness.)  We 
invited the parents to bring him in the morning, but the afternoon schedule fit better into 
their plans.  Danny's family was experiencing a good deal of tension and this stress may 
well have contributed to his need to test limits, to be best at everything, to meet life on his 
own terms. 

 
Danny was always grumpy and unwilling to participate at first, so we let him 

"nest" under a table until he was more alert.  Even after he was thoroughly awake, he 
remained rather grouchy and hung back, actively rejecting our invitations and seldom 
making choices or even engaging in activities he might devise for himself.  We guessed 
that Danny was rather used to being told what to do at home and had not had much "mess 
around time" to explore interests of his own.  Half-watching ongoing games and projects 
from the sidelines, he fiddled about the room rather aimlessly until we were ready to put 
everything away to go on to the next activity.  That was the point at which Danny decided 
to do the first one.  Clearly, we realized, he needed his own plan.  Eventually, we learned 
to place some interesting books under the table before he arrived and to leave him to his 
own devices.  We spent no energy cajoling him to join us and simply let him know what 
was coming next. 

 
This system worked beautifully for Danny.  Having had quite a lot of time to get 

himself ready, he generally joined us for the second group activity of the day and, once 
engaged, he grasped concepts quickly, often became intensely invested, and was excited 
and enthusiastic about his new discoveries.  Because Danny was never ready for recess 
when the others were, one of us stayed inside with him as he continued to explore 
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materials that had caught his interest and to write or dictate detailed notes for his journals.  
Danny tended to work by himself rather than with the other children, anyway, for it 
pleased him very little if they arrived at a solution or finished a project before he did. 

 
That Danny's tempo resulted in his skipping many opportunities was a tradeoff to 

which he, and we, needed time to adjust.  But from "Difficult Danny" he became 
"Different Danny," marching with verve and precision to every other beat of his own 
drummer! 

 
Anything But Writing! 

 
JoAnne hated writing.  The worst parts of first grade for her were all the requests 

to write.  Her mom was puzzled by JoAnne's dislike of writing, for she loved to read and 
draw.  Her favorite subject, however, was math.  During one of the second year Math 
Trek sessions, the children were asked to make a drawing and write a story that would 
make sense of some simple equations.  One equation was 0 - 3 = -3.  JoAnne loved 
negative numbers and was intrigued by the challenge of coming up with a plausible story.  
She spent a long time drawing a picture and then wrote a comical story about a man who 
had to dig three levels underground in order to get to a certain pipe. 

 
After this episode, JoAnne would often choose to write a story about an equation 

instead of other activities offered.  Connecting writing to a subject she cared about gave 
her a reason to write.  While other children may not share JoAnne's initial feelings about 
writing, writing about math is an excellent way for children to make sense of equations 
and to invite them to reflect on math. 

 
Diligent, Hard-Working, and Perfectionist 

 
Pam was one of the hardest-working, most deliberate, and thoughtful participants 

at Math Trek.  She came into the sessions ready to work at whatever was put before her, 
erasing and starting over if the work was not neat and precise enough for her.  Typically, 
she liked anything to do with calculations or patterns.  She hated all of the estimating 
activities and refused to volunteer an estimate.  In group discussions, she never 
volunteered her thinking and raised her hand only when she was sure of an answer. 

 
One session, she worked on number palindromes derived by adding a pair of 

palindromes, and then adding sums to addends until the next palindrome is accomplished.  
She filled the entire board with her calculations.  When her dad came in to pick her up, 
we showed him Pam's prodigious efforts.  He glanced at the board and then pointed to 
one calculation in the hundred thousands and said, "There's a mistake there."  It was no 
wonder that Pam tended not to be a risk-taker! 

 
Although it's hard to know how ingrained some personality characteristics such as 

perfectionism are, we thought it would be worthwhile to help Pam take some intellectual 
risks.  We were careful not to pressure her and to back off when she resisted.  Our tack 
was to make sure she had some one-to-one time at some point during the session, often at 
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recess time.  Pam was an excellent gymnast and could perform amazing backward flips 
and splits.  After admiring her accomplishments, we would casually ask her to estimate 
how many flips she could do at once or how many somersaults it would take her to get 
across the gym floor.  Eventually, we invited her to take on the all-important role of 
"mother" in the game of "Mathematical Mother May I."  For this role she was required to 
invent math problems to give to the other children.  Gradually, we noticed that Pam 
began to take more risks, even volunteering opinions and answers during joint problem-
solving sessions as when we read Open Court stories. 

 
High-Spirited and High Energy 

 
Kenny was as impulsive as Pam was deliberate and careful.  He came into 

sessions like a ball of fire, needing to touch all the materials, read all the job-cards, and 
make contact with all the people in the room.  When asked to estimate or solve a problem 
he was always first to raise his hand (and was often right!), and during group discussions 
was often the first child to become squirmy and complain that he was bored.  Keeping 
Kenny engaged and invested was challenging, to say the least.  He was obviously very 
bright as well as very restless. 

 
Observing him made it clear that he needed a lot of space and leeway which we 

could offer him as long as he was being polite and appropriate.  Pairing him up with one 
of the aides was also very helpful, as he enjoyed having an audience for his mathematical 
prowess.  Activities such as the batteries and bulbs project were very successful in 
sustaining his attention because of the multiple elaborations with which to experiment.  
We also discovered that he was quite talented at representing his mathematical thinking 
and activities through drawing which we encouraged him to do each session.  He was 
definitely our signal system; if Kenny was bored we knew an activity was not working 
out quite right and if he was thoughtfully engaged we knew we had a hit! 

 
 
 
 
 



97 

 

Epilogue:  A Reminder 
 
This book has been written with the goal of making mathematics stimulating and 

rewarding for math-talented children.  In Chapter 3, we discussed ways of organizing 
classes and schools to support their development; Chapters 4 through 7 described a 
philosophy of teaching mathematics and open-ended teaching methods that make it 
possible, within regular or specialized classrooms, to engage and challenge children to 
learn about mathematics in ways that are deep and resonant.  These open-ended activities 
allow children to seek their own level, affording many possibilities for the expression of 
talent and interest. 

 
We want readers to be well aware that it is not the specific tasks we have 

described that constitute the meat of the matter, for they are only examples and 
illustrations that imaginative and spirited teachers can use to spark their own ideas.  
There are a great many other sources of teaching activities available these days (some 
embedded in current curricular materials, some examples listed in the Annotated 
Bibliography in the appendices to this volume; and many others published by the 
National Council of Teachers of Mathematics and other publishers and journals such as 
Teaching Children Mathematics). 

 
Rather, the message of this book is that all children learn best when the challenges 

provided in school are those for which they are just about ready.  Accomplishing this 
optimal match follows naturally when teachers are open to seeing children as individuals, 
ask intriguing questions to help children pose problems, supply information when 
children are ready (and hungry for it), and listen carefully to children's thinking.  In these 
ways, teachers can maintain the flexibility that permits the math-talented child to be 
challenged and empowered and for all the children in the class to have exciting math 
experiences.  For, of course, some mathematical voices are stronger and richer than 
others; it is the teacher's responsibility to pull all the voices together into a community of 
learners where each child gets to hear and learn from others.  In this way, teachers listen 
to and respect individual voices in the community. 

 
It is our hope that, having read this book, teachers will make use of the materials 

included in the appendices in the service of their own skilled approach, in the context of a 
"gifted-friendly" classroom—a classroom that is equally friendly and responsive to all 
children. 
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Questionnaire for Parents 
 

Date__________________________ 
Completed by Mom ____ Dad____ 

 
 

MATH TREK PARENT QUESTIONNAIRE 
 

1. How old was your child when you first noticed a special interest in numbers or 
number ideas, more than you expected at his/her age? 

       Yrs       Months; (or)       I haven't noticed any such interest 
 
2. If you have noticed such interest, please describe what you remember about your 

child's first involvement with numbers. 
 
 
 
 
 Subsequent incidents you remember? 
 
 
 
 
3. Did you try to teach your child about numbers before he or she showed a 

spontaneous interest?        Yes        No.  If so, what? 
 
 
 
 

After your child showed some interest, and you began to respond to that, do you 
remember what you did to encourage your child's interest?  Please describe.  (For 
example, did you pick out books that featured counting?  Talk about numbers?  
Play board games?) 

 
 
 
 
4. Is anyone in your family known as especially "good at numbers?"  Please 

describe. 
 
 
 
 
5. Does either parent have a job that involves working with numbers?  Please 

describe. 
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6. Now, about your child's current skills with numbers.  Do you think your child 
could typically do these things?  (You need not ask the child actually to do these 
before you answer): 

 
 Yes   No    ? 
                         Repeat his or her street address? 
                         Phone number? 
                         Remember anyone else's phone number or address? 
                         Count 20 things (not just saying the words)? 
                         Spontaneously comment on number relationships, like,  
              "A bird just flew away; now there are only 3!" 
                         Spontaneously comment on signs such as speed limits? 
                         Tell how fast your car is going by the speedometer? 
                         Play a board game with counting (e.g., Parcheesi)? 
                         Play a complicated game like Monopoly (no help)? 
                         Add two-numbers up to 10? 
                         Add two-numbers up to 20? 
                         Add two-digit numbers without carrying? 
                         Figure the difference between 9 and 2? 
                         Figure the difference between 9 and 21? 
                         Count by 10s to 100? 
                         Count by 100s to 1000? 
                         Make change for a quarter? 
                         Make change for a dollar? 
                         Follow a recipe calling for measurement (no help)? 
                         Tell whether a nickel or a dime is more money? 
                         Tell the days of the week? 
                         Tell which day comes before Friday? 
                         Know the meaning of "last week" and "next week?" 
                         Do problems in math workbooks?  Grade level ____ 
                         Tell which is smaller, 6 or 4? 
                         Tell which is bigger, 33 or 27? 
 
 
7. Is there anything else you'd like to mention?  Please feel free to continue on the 

back of the page if there is something we have missed! 
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Job Cards and Other Activities 
 
Introduction.  This Appendix gives some examples of the types of Job Cards and 

games that we used at the Saturday Clubs.  We usually set out one type of card per table, 
along with an array of material that might be useful tools for solving the problems 
detailed on the cards.  At times, we included extension activities and questions that 
helped prolong the math exploration. 

 
 
 
 

What Is Your Name Worth? 
 
If A = one penny, B = two pennies, etc., 
what is your first name worth? 
 
What is your last name worth? 
 
How did you figure it out? 
 
What is the most expensive name you can 
think of? 
 
Think of a name that costs exactly forty-
three cents! 
 
Can you think of any variations on this? 

 
 
 
 
 
 

Write a Story for . . . 
 
1. Write a story for this number sentence: 
 
 0 - 3 = -3 
 
2. Now draw a picture to go with your story! 
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Triangles! 
 
1. Draw 3 different kinds of triangles. 
 
2. What makes them all triangles? 
 
3. Which triangle is your favorite one? 
 Do your classmates agree? 
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Incredible Equations 
 
Take a number like 28 and see how many equations you can write 
that will have that answer. 
 
 
Challenge:  Making equations make sense. 
 
Make up interesting equations that at first glance don’t make sense 
because we need to think first about the units involved.  For 
example, in what way is 5 + 5 = 2 true?  How about 1 - 1 = 59? 

 
 
 
 
 
 
 
 

 
 
 



116 

 

 
 
 
 
 
 

Pentominos 
 
Take five tiles and arrange them in as many different ways as you 
can, making sure that at least two tiles share a side. 
 
Rotations don’t count as a different arrangement. 
 
Draw each arrangement you make on a piece of graph paper. 
 
How many arrangements did you make all together? 
 
Name each arrangement! 
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Switching Places Boat Problem 
 
First, draw three circles big enough to fit color tiles on 
to: 
 
 O O O 
 
Take 1 blue and 1 yellow tile and place them on the two 
outside circles.  Imagine that the paper is a boat with 
three places, and the blue person wants to switch places 
with the yellow person.  They can only switch by 
moving one position at a time, and in one direction.  
They can also jump over one person, but only one of an 
opposite color. 
 
After you have figured this out, draw 5 circles and use 
two blue and two yellow tiles, leaving the middle circle 
blank. 
 
Record how many moves it takes to switch sides. 
 
Try this game with 7, 9, and 11 circles. 
 
Record the following information in a table:  Places in 
the boat.  How many moves it took to switch places.  
Do you notice any patterns? 
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What’s Your Pattern Worth? 
 
1. Make a pattern with your pattern blocks. 
 
2. Figure out how much your pattern is worth: 
 
Cost of Shapes: 
 
triangles = $1 squares = $2 
 
parallelogram = $3 rhombus = $1 
 
trapezoid = $4 hexagon = $5 
 
Challenge: Can you make a shape that is worth $23? 
 
 What is the most expensive hexagon that 

you can make? 
 
 
 
 
 

Pattern Block Fractions 
 
Hexagons = 1 whole 
 
Triangles = 1/6 
 
Parallelograms = 1/3 
 
Trapezoids = 1/2 
 
 
Using only the above blocks, 
make a design and figure out 
how much it’s worth. 
 
How did you add and keep track? 
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How Many Different Kinds of Rectangles Can 
You Make With 12 Cubes or Tiles? 
 
1. Make as many different rectangles as you can and 

record each one. 
 
2. Describe each recording by saying how many cubes 

long, and how many cubes wide. 
 
Now try it with 24 cubes. 
 
Now try it with 19 cubes. 
 
(And any other number that you like) 
 
What did you discover from doing this activity? 

 
 
 
 
 
 
 

Rectangle Hunt 
 
Go on a rectangle hunt around the room. 
 
Record the number of rectangles that you 
find, and their measurements. 
 
Or, use graph paper and draw the rectangles 
to scale (for example each inch = 1 box). 
 
Which rectangle(s) do you like best? 
 
Why? 
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Golden Rectangles 
 
1. Using graph paper, make a 13 x 21 rectangle. 
 
2. Make the largest square you can in the rectangle 

(using the left side of the rectangle as one of the 
sides). 

 
3. Going counter-clockwise, continue to make the 

largest square you can in the leftover part of the 
rectangle. 

 
4. What is the size of each square? 
 
5. Can you find the pattern in this sequence? 
 
6. Draw diagonals, starting at the bottom left hand 

corner, through each of the successively smaller 
squares, using a continuous line. 

 
 
 
 
 
 
 

Math Balance 
 
1. Using a math balance, find three ways to 

balance the number 35 (3 tens and a five). 
 
2. What can you say about the four different 

ways to make 35? 
 
3. Make up problems and solve them. 
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Hexagon Game 
 
Materials:  Triangles, trapezoids, parallelograms, and hexagons from 
Pattern Block Sets are used for this trading game that involves 
fractions and congruency.  One die, numbered 1 through 6, or a die 
marked with fractions (1/2, 1/3, 2/3, 1/6, 5/6 and 1). 
 
Object of the game:  To make as many hexagons as possible during 
the length of the play. 
 
Playing the game:  Triangles are the unit for this game, thus, the 
number rolled tells how many triangles or their equivalent to take.  For 
example, if a three is thrown, the player can choose three triangles, a 
parallelogram and a triangle, or a trapezoid.  On the next turn, a four is 
thrown.  Now, the player can choose four triangles or two 
parallelograms or a trapezoid and a triangle.  He/she can then figure 
out how to form a hexagon using the pieces he/she has.  He/she will 
have a hexagon and one triangle left over. 
 
Note:  Prior experience with making hexagons from different 
combinations of pattern blocks is necessary. 
 
This game works well done cooperatively.  The group challenge is to 
fill a honeycomb pattern made by tracing hexagons on a piece of 
paper. 
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Measuring Angles with Pattern Blocks 
 

Prior experience:  Unstructured "play time" with pattern blocks, exploring 
how they fit together. 
 

 1. Start off by asking:  "Why do pattern blocks fit together so well?  List 
their ideas on the board, using their language. 

 

 2. Drawing on what the children say, introduce the idea of angle and draw 
an angle, mentioning how angles encompass both corners and sides. 

 

 3. Show them the various pattern block pieces and point out some of the 
angles.  Ask:  "What do you notice about the different angles?"  List 
their ideas on the board. 

 

 4. Ask how they might categorize the different angles that they see. 
 

 5. Tell them that there is a way to measure angles; draw an angle on the 
board and show the area that is measured. 

 

 6. Hold up a square piece and ask them what they think about that angle.  
Tell them the angles on a square are right angles and measure 90 
degrees.  Ask them where they see right angles and why they are so 
prevalent (this should lead to a discussion of art, architecture, and 
nature).  You might use their discussion of right angles to categorize 
angles as smaller than or larger than right angles (acute or obtuse). 

 

 7. Now, ask them to find out what all the angles on the pattern blocks 
measure (either working in pairs or in groups) using the information that 
a right angle measures 90 degrees.  Tell them they must record each 
shape (have templates available) and show what each angle measures, 
and how they figured it out.  (Give out a set of pattern blocks to each 
pair or group.)  Before they start, ask:  "Are all the angles in a shape the 
same?"  Discuss the fact that they aren't all the same, so sometimes 
they'll need to figure out more than one angle for a shape. 

 

 8. If some children finish earlier, tell them to go on to figure out how many 
degrees are in the entire shape (by adding the degrees from each angle in 
the shape). 

 

 9. Discuss findings/strategies with the whole group.  Have them show on 
the overhead with overhead pattern blocks. 

 

10. Make a chart with the number of angles and the number of total degrees. 
 

11. Fill in some of the holes on the chart by having them construct and figure 
out the degrees in a pentagon, a septagon, an octagon, etc. 

 

12. When all the numbers are up there and discussed, have them find the 
pattern. 
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Lots of Boxes 
 
Object of the game:  This is a game for two people.  The idea 
is to make a bigger rectangle than your partner. 
 
Directions: 
 
1. Each partner takes a piece of grid paper and a pencil. 
 
2. One person takes the die and throws it.  The number on the 

die tells you how long your rectangle will be.  Now draw it.  
Then you throw the die again, and that will tell you how 
high your rectangle will be.  Now draw it, and finish your 
rectangle.  How many little boxes are in your rectangle?  
That's your score.  Write it down. 

 
3. Now it's your partner's turn to do the same. 
 
4. Whoever has the bigger score, wins. 
 
Play as many times as you like! 

 
 
 
 
 

Questions to ask: 
 
1. How did you figure out how many little boxes were in your rectangle? 
2. Could you find an easier way to figure it out? 
3. Could you write a number sentence to show how many little boxes there are 

altogether? 
4. What's the smallest rectangle you could make by throwing the die twice? 
5. What's the biggest rectangle you could make? 
 
Challenges: 
 
1. Use two dice each time you throw! 
2. Devise two ways to figure out how many squares there are in your box. 
3. Write number sentences or equations for each way. 
4. Write a formula for finding out how many squares there are no matter what you roll. 
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Annotated Bibliography 
 

Children's Literature 
 
Anno, M.  (1983).  The mysterious multiplying jar (1-6).  New York:  Philomel 

Books. 
Provides wonderful pictorial illustration of factorials. 

 
Anno, M.  (1982).  Anno's math games I.  New York:  Philomel Books. 
Anno, M.  (1985).  Anno's math games II.  New York:  Philomel Books. 
Anno, M.  (1987).  Anno's math games III.  New York:  Philomel Books. 

These books include a variety of intellectual games that invite 
children to see how mathematics permeates the world. 

 
Anno, M.  (1989).  Anno's hat tricks.  New York:  Philomel Books. 
Anno, M.  (1990).  Socrates and the three little pigs.  New York:  Philomel 

Books. 
These two books explore probability. 

 
Burns, M.  (1994).  The greedy triangle (K-3).  New York:  Scholastic. 

The story of a triangle who magically changes shape in order to see 
what it's like to have more sides and angles.  Good for discussion of 
how shapes are part of our world. 

 
Draze, D.  (1990).  Can you count in Greek:  Exploring ancient number systems 

(1-6).  San Louis Obipso, CA:  Dandy Lion Publications. 
Explores Egyptian, Babylonian, Roman, Greek, and Mayan number 
systems. 

 
Eichelberger, B., & Larson, C.  (1993).  Constructions for children:  Projects in 

design technology.  Palo Alto, CA:  Dale Seymour Publications. 
Includes instructions for projects from bridges to clocks with gears. 

 
Schwartz, D., & Kellogg, S.  (1989).  If you made a million.  New York:  

Scholastic. 
Schwartz, D., & Kellogg, S.  (1985).  How much is a million.  New York:  

Scholastic. 
Shows how to play with astronomical numbers and what they look 
like. 

 
Scieszka, J., & Smith, L.  (1995).  The math curse.  New York:  Viking Press. 
Tompert, A., & Parker, R. A.  (1990).  Grandfather Tang's story.  New York:  

Crown Publishing.   
Contains story of animals transforming; based on tangrams. 
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Books on Children's Mathematical or Scientific Learning 
 
Duckworth, E.  (1996).  The having of wonderful ideas and other essays on 

teaching and learning (2nd ed.).  New York:  Teachers College Press. 
Duckworth has wonderful ideas about how children learn and how to 
understand children's learning and sense-making. 

 
Gallas, K.  (1995).  Talking their way into science:  Hearing children's questions 

and theories, responding with curricula.  New York:  Teachers College Press. 
Includes reflections and examples by a first/second grade teacher. 

 
Ginsburg, H.  (1989).  Children's arithmetic:  How they learn it and how you 

teach it.  Austin, TX:  Pro-Ed. 
This book explains how children's mathematical thinking develops, 
beginning in infancy.  Great examples of how children invent 
meaningful ways of approaching numbers and calculations. 

 
Kamii, C.  (1984).  Young children reinvent arithmetic.  New York:  Teachers 

College Press. 
Kamii, C.  (1989).  Young children continue to reinvent arithmetic:  Second 

grade.  New York:  Teachers College Press. 
Kamii, C.  (1993).  Young children continue to reinvent arithmetic:  Third grade.  

New York:  Teachers College Press. 
These three books describe in detail how children invent their own 
mathematically meaningful ways to compute with numbers.  Based on 
the author's own classroom research. 

 
Papert, S.  (1993).  The children's machine.  New York:  Basic Books. 

Papert, one of the inventors of Logo, a computing program for 
children, writes about his vision for how children learn best. 

 
Schifter, D., & Fosnot, C.  (1993).  Reconstructing mathematics education.  New 

York:  Teachers College Press.  
Describes how several teachers changed to a more open-ended and 
constructivist approach towards teaching math. 

 
 

Curriculum Materials 
 
Burns, M.  (1987).  Math solutions (K-3).  New Rochelle, NY:  Math Solutions 

Publications. 
Provides detailed descriptions of lessons that the author conducted in 
classrooms over several sessions each. 
(Note:  Marilyn Burns is a prolific author, with many worthwhile titles.) 
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Childcraft.  (1988).  The how and why library (Vol. 13:  Mathemagic).  Chicago:  
World Book. 

This book explores the history and magic of mathematics through 
stories, puzzles, and activities. 

 
Garland, T. H.  (1987).  Fascinating Fibonacci:  Mystery and magic in numbers.  

Palo Alto, CA:  Dale Seymour. 
Explores the Fibonacci sequence in nature, anatomy, art, and 
architecture. 

 
Haag, V., Kaufman, B., Martin, E., & Rising, G.  (1995).  Challenge:  A program 

for the mathematically talented (3-6).  Reading, MA:  Addison-Wesley. 
This is a program for teaching logic through puzzles and problems as 
well as other aspects of mathematical thinking and problem-solving. 

 
Kaye, P.  (1987).  Games for math.  New York:  Pantheon Books 

An inventive educator has come up with great ideas for how to play 
with math. 

 
Magarian-Gold, J., & Mogenson, S.  (1990).  Exploring with color tiles (K-3).  

White Plains, NY:  Cuisenaire. 
Provides activities using tiles to explore operations, perimeter, and 
probability. 

 
National Council of Teachers of Mathematics.  (1990-1996).  Curriculum and 

evaluation standards addenda series.  Reston, VA:  Author. 
This is a wonderful series that deals with number sense, patterns, 
making sense of data, spatial sense, etc. 

 
Ritchhart, R.  (1995).  Making numbers make sense:  A sourcebook for developing 

numeracy.  Reading, MA:  Addison-Wesley. 
This resource book uses interesting problem-solving contexts in which 
to investigate traditional topics in math such as place value, 
measurement, and statistics. 

 
Stenmark, J., Thompson, V., & Cossey, R.  (1986).  Family math (K-8).  

Berkeley, CA:  Lawrence Hall of Science. 
Activities for all areas of mathematics that can be done at home with 
parents and siblings. 

 
Winebrenner, S.  (1992).  Teaching gifted kids in the regular classroom.  St. Paul, 

MN:  Free Spirit. 
Strategies and techniques to meet the academic needs of gifted 
children in regular classrooms. 
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NOTE: Dale Seymour and Cuisenaire put out catalogues that include many excellent 
titles.  TERC, a research group, also publishes books that detail curriculum 
units to be used in conjunction with hands-on math and science learning. 

 TERC's address is:  2067 Massachusetts Avenue, Cambridge, MA 02140 
 
 

Books to Satisfy Your Own Mathematical Curiosity 
 
Peterson, I.  (1990).  Islands of truth:  A mathematical mystery cruise.  New York:  

W. H. Freeman. 
 
Peterson, I.  (1988).  The mathematical tourist:  Snapshots of modern 

mathematics.  New York:  W. H. Freeman. 
 
Stewart, I.  (1992).  Another fine math you've got me into.  New York:  W. H. 

Freeman. 
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Recommendations for the Classroom 
 
These recommendations summarize much of what we learned about how to work 

with young children and math.  Some of the recommendations concern setting a climate 
that empowers, and other recommendations concern the curriculum. 

 
 
1. WAIT TIME:  "I'm interested in what everyone in this class is thinking.  

So I'm going to wait until everyone has thought through this problem." 
 
2. ALTERNATIVES WHILE WAITING:  Give the speedy children other 

problems to work on, or ask them to come up with more than one way to 
solve the problem. 

 
3. TALK TO CHILDREN ABOUT ALL THE DIFFERENT WAYS 

OUR MINDS WORK:  Some children have minds that work quickly and 
memories that allow them to recall facts right away; other children need 
more time but can often, given that time, come up with thoughtful 
responses.  Have children observe themselves and each other and discuss 
the fact that minds work differently and that is okay.  Ask about students' 
theories of what it means to be smart and introduce the idea that being 
smart involves working hard.  Ask children to notice the wonderfully 
varied ways minds work as they share strategies for solving problems. 

 
4. EXPLORATION TIME:  Whenever you introduce a new material, or 

bring out a material children haven't used for a while, give children plenty 
of time to explore. 

 
5. OBSERVE AND EXPRESS INTEREST IN EXPLORATIONS:  

Children are thrilled when you take an interest in their problem-posing and 
ask them questions and suggest extensions.  You could also ask them to 
"teach" you how to do what they are doing, for instance, making a pattern 
with symmetry. 

 
6. USE THEIR EXPLORATIONS AS THE BASIS FOR 

CURRICULUM DEVELOPMENT AND DECISION-MAKING:  
Sometimes new questions, problems, and activities can arise out of the 
children's explorations; children can teach each other, and you can plan 
further activities based on what you see. 

 
7. DEVELOP AND FOCUS ON THE BIG IDEAS:  Most of early 

mathematics revolves around key themes and big ideas.  Study the 
curriculum in use and find the big ideas that underlie the tasks and 
activities.  The focus on the big ideas helps children to sustain intellectual 
interest and excitement, and to make mathematical connections. 
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8. ASK BIG QUESTIONS:  Children are often excited and intrigued by 
big, open-ended questions that don't have one definite answer, questions 
that have a philosophical bent.  These are fundamental questions that 
invite children to theorize and become intellectually curious.  Examples 
are:  What is a pattern?  Where do the patterns exist?  In our heads or in 
the numbers?  What is infinity?  Can numbers become smaller and smaller 
or just bigger and bigger?  What are different ways to make sense of data? 

9. CREATE AN ATMOSPHERE WHERE DIFFERENT THINKING 
STYLES ARE RESPECTED:  Show appreciation for the different 
thinking styles in your class.  For example, "I see you like to take your 
time and think before you talk."  "I see you really enjoy coming up with an 
answer right away." 

 
10. TAKE CHILDREN'S THINKING SERIOUSLY:  Instead of praising 

automatically, take the time to think of a serious response to a child's 
question, pattern, or verbalization of a thought. 

 
11. INVITE CHILDREN TO CONSTRUCT MULTIPLE 

REPRESENTATIONS:  Ask students to represent their ideas and 
problem-solving using different media (e.g., manipulatives, tables of data, 
graphs, pictures, journal-writing, equations).  Constructing more than one 
type of representation helps children to become reflective, to compare the 
information that different representations yield, and to problem-solve 
about the important issue of representation itself. 
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